Geometric Genus
   HOME
*





Geometric Genus
In algebraic geometry, the geometric genus is a basic birational invariant of algebraic varieties and complex manifolds. Definition The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number (equal to by Serre duality), that is, the dimension of the canonical linear system plus one. In other words for a variety of complex dimension it is the number of linearly independent holomorphic -forms to be found on .Danilov & Shokurov (1998), p. 53/ref> This definition, as the dimension of : then carries over to any base field, when is taken to be the sheaf of Kähler differentials and the power is the (top) exterior power, the canonical line bundle. The geometric genus is the first invariant of a sequence of invariants called the plurigenera. Case of curves In the case of complex varieties, (the complex loci of) non-singular curves are Riemann surfaces. The algebraic definition of genus agre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plurigenera
In mathematics, the pluricanonical ring of an algebraic variety ''V'' (which is non-singular), or of a complex manifold, is the graded ring :R(V,K)=R(V,K_V) \, of sections of powers of the canonical bundle ''K''. Its ''n''th graded component (for n\geq 0) is: :R_n := H^0(V, K^n),\ that is, the space of sections of the ''n''-th tensor product ''K''''n'' of the canonical bundle ''K''. The 0th graded component R_0 is sections of the trivial bundle, and is one-dimensional as ''V'' is projective. The projective variety defined by this graded ring is called the canonical model of ''V'', and the dimension of the canonical model is called the Kodaira dimension of ''V''. One can define an analogous ring for any line bundle ''L'' over ''V''; the analogous dimension is called the Iitaka dimension. A line bundle is called big if the Iitaka dimension equals the dimension of the variety. Properties Birational invariance The canonical ring and therefore likewise the Kodaira dimension is a b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Genus
In mathematics, the arithmetic genus of an algebraic variety is one of a few possible generalizations of the genus of an algebraic curve or Riemann surface. Projective varieties Let ''X'' be a projective scheme of dimension ''r'' over a field ''k'', the ''arithmetic genus'' p_a of ''X'' is defined asp_a(X)=(-1)^r (\chi(\mathcal_X)-1).Here \chi(\mathcal_X) is the Euler characteristic of the structure sheaf \mathcal_X. Complex projective manifolds The arithmetic genus of a complex projective manifold of dimension ''n'' can be defined as a combination of Hodge numbers, namely :p_a=\sum_^ (-1)^j h^. When ''n=1'', the formula becomes p_a=h^. According to the Hodge theorem, h^=h^. Consequently h^=h^1(X)/2=g, where ''g'' is the usual (topological) meaning of genus of a surface, so the definitions are compatible. When ''X'' is a compact Kähler manifold, applying ''h''''p'',''q'' = ''h''''q'',''p'' recovers the earlier definition for projective varieties. Kähler manifolds By u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birational
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational map from one variety (understood to be irreducible) X to another variety Y, written as a dashed arrow , is defined as a morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a rational map such that there is a rational map inverse to ''f''. A birational map induces an isomorphism from a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Normal Scheme
In algebraic geometry, an algebraic variety or scheme ''X'' is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety ''X'' (understood to be irreducible) is normal if and only if the ring ''O''(''X'') of regular functions on ''X'' is an integrally closed domain. A variety ''X'' over a field is normal if and only if every finite birational morphism from any variety ''Y'' to ''X'' is an isomorphism. Normal varieties were introduced by . Geometric and algebraic interpretations of normality A morphism of varieties is finite if the inverse image of every point is finite and the morphism is proper. A morphism of varieties is birational if it restricts to an isomorphism between dense open subsets. So, for example, the cuspidal cubic curve ''X'' in the affine plane ''A''2 defined by ''x''2 = ''y''3 is not normal, because there is a finite birational morphism ''A''1 → ''X'' (namely, ''t'' maps to (''t''3, ''t''2) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjunction Formula
In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction. Adjunction for smooth varieties Formula for a smooth subvariety Let ''X'' be a smooth algebraic variety or smooth complex manifold and ''Y'' be a smooth subvariety of ''X''. Denote the inclusion map by ''i'' and the ideal sheaf of ''Y'' in ''X'' by \mathcal. The conormal exact sequence for ''i'' is :0 \to \mathcal/\mathcal^2 \to i^*\Omega_X \to \Omega_Y \to 0, where Ω denotes a cotangent bundle. The determinant of this exact sequence is a natural isomorphism :\omega_Y = i^*\omega_X \otimes \operatorname(\mathcal/\mathcal^2)^\vee, where \vee denotes the dual of a line bundle. The particular case of a smooth divisor Suppose that ''D'' is a smooth diviso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Serre Twisting Sheaf
In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Proj of a graded ring Proj as a set Let S be a graded ring, whereS = \bigoplus_ S_iis the direct sum decomposition associated with the gradation. The irrelevant ideal of S is the ideal of elements of positive degreeS_+ = \bigoplus_ S_i .We say an ideal is homogeneous if it is generated by homogeneous elements. Then, as a set,\operatorname S = \. For brevity we will sometimes write X for \operatorname S. Proj as a topological space We may define a topology, called the Zariski topology, on \operatorname S by defining the closed sets to be those of the form :V(a) = \, where a is a homogeneous ideal of S. As in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Geometry Of Projective Spaces
Projective space plays a central role in algebraic geometry. The aim of this article is to define the notion in terms of abstract algebraic geometry and to describe some basic uses of projective space. Homogeneous polynomial ideals Let k be an algebraically closed field (mathematics), field, and ''V'' be a finite-dimensional vector space over k. The symmetric algebra of the dual vector space ''V*'' is called the polynomial ring on ''V'' and denoted by k[''V'']. It is a naturally graded algebra by the degree of polynomials. The projective Nullstellensatz states that, for any homogeneous ideal ''I'' that does not contain all polynomials of a certain degree (referred to as an irrelevant ideal), the common zero locus of all polynomials in ''I'' (or ''Nullstelle'') is non-trivial (i.e. the common zero locus contains more than the single element ), and, more precisely, the ideal of polynomials that vanish on that locus coincides with the radical of an ideal, radical of the ideal ''I''. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Riemann–Hurwitz Formula
In mathematics, the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ''ramified covering'' of the other. It therefore connects ramification with algebraic topology, in this case. It is a prototype result for many others, and is often applied in the theory of Riemann surfaces (which is its origin) and algebraic curves. Statement For a compact, connected, orientable surface S, the Euler characteristic \chi(S) is :\chi(S)=2-2g, where ''g'' is the genus (the ''number of handles''), since the Betti numbers are 1, 2g, 1, 0, 0, \dots. In the case of an (''unramified'') covering map of surfaces :\pi\colon S' \to S that is surjective and of degree N, we have the formula :\chi(S') = N\cdot\chi(S). That is because each simplex of S should be covered by exactly N in S', at least if we use a fine enough triangulation of S, as we are entitled to do since the Euler characteristic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Roch Theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus ''g'', in a way that can be carried over into purely algebraic settings. Initially proved as Riemann's inequality by , the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student . It was later generalized to algebraic curves, to higher-dimensional varieties and beyond. Preliminary notions A Riemann surface X is a topological space that is locally homeomorphic to an open subset of \Complex, the set of complex numbers. In addition, the transition maps between these open subsets are required to be holomorphic. The latter condition allows one to transfer the notions and methods of complex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genus (mathematics)
In mathematics, genus (plural genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic ''χ'', via the relationship ''χ'' = 2 − 2''g'' for closed surfaces, where ''g'' is the genus. For surfaces with ''b'' boundary components, the equation reads ''χ'' = 2 − 2''g'' − ''b''. In layman's terms, it's the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has 1 such h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]