HOME





Global Dimension
In ring theory and homological algebra, the global dimension (or global homological dimension; sometimes just called homological dimension) of a ring ''A'' denoted gl dim ''A'', is a non-negative integer or infinity which is a homological invariant of the ring. It is defined to be the supremum of the set of projective dimensions of all ''A''- modules. Global dimension is an important technical notion in the dimension theory of Noetherian rings. By a theorem of Jean-Pierre Serre, global dimension can be used to characterize within the class of commutative Noetherian local rings those rings which are regular. Their global dimension coincides with the Krull dimension, whose definition is module-theoretic. When the ring ''A'' is noncommutative, one initially has to consider two versions of this notion, right global dimension that arises from consideration of the right , and left global dimension that arises from consideration of the left . For an arbitrary ring ''A'' the right an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental ideas including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). He adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set a course for mathematical research of the 20th century. Hilbert and his students contributed to establishing rigor and developed important tools used in modern mathematical physics. He was a cofounder of proof theory and mathematical logic. Life Early life and education Hilbert, the first of two children and only son of O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Residue Field
In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and \mathfrak is a maximal ideal, then the residue field is the quotient ring k=R/\mathfrak, which is a field. Frequently, R is a local ring and \mathfrak is then its unique maximal ideal. In abstract algebra, the splitting field of a polynomial is constructed using residue fields. Residue fields also applied in algebraic geometry, where to every point x of a scheme X one associates its residue field k(x). One can say a little loosely that the residue field of a point of an abstract algebraic variety is the ''natural domain'' for the coordinates of the point. Definition Suppose that R is a commutative local ring, with maximal ideal \mathfrak. Then the residue field is the quotient ring R/\mathfrak. Now suppose that X is a scheme and x is a point of X. By the definition of a scheme, we may find an affine neighbourhood \mathcal = \text(A) of x, with some commutative ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. The set of maximal ideals of a unital commutative ring ''R'', typically equipped with the Zariski topology, is known as the maximal spectrum of ''R'' and is variously denoted m-Spec ''R'', Specm ''R'', MaxSpec ''R'', or Spm ''R''. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one-sided maximal ideal ''A'' is not necessarily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Injective Dimension
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module ''Q'' that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if ''Q'' is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module ''Y'', any module homomorphism from this submodule to ''Q'' can be extended to a homomorphism from all of ''Y'' to ''Q''. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook . Injective modules have been heavily studied, and a variety of additional notions are defined in terms of them: Injective cogenerators are injective modules that faithfully represent the entire category of modules. Injective resolutions measure how far from injective a module is in terms of the injective dimension and represent modules in the derived category. Injective ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely-generated Module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. Definition The left ''R''-module ''M'' is finitely generated if there exist ''a''1, ''a''2, ..., ''a''''n'' in ''M'' such that for any ''x'' in ''M'', there exist ''r''1, ''r''2, ..., ''r''''n'' in ''R'' with ''x'' = ''r''1''a''1 + ''r''2''a''2 + ... + ''r''''n''''a''''n''. The set is referred to as a generati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Module
In mathematics, more specifically in ring theory, a cyclic module or monogenous module is a module over a ring that is generated by one element. The concept is a generalization of the notion of a cyclic group, that is, an Abelian group (i.e. Z-module) that is generated by one element. Definition A left ''R''-module ''M'' is called cyclic if ''M'' can be generated by a single element i.e. for some ''x'' in ''M''. Similarly, a right ''R''-module ''N'' is cyclic if for some . Examples * 2Z as a Z-module is a cyclic module. * In fact, every cyclic group is a cyclic Z-module. * Every simple ''R''-module ''M'' is a cyclic module since the submodule generated by any non-zero element ''x'' of ''M'' is necessarily the whole module ''M''. In general, a module is simple if and only if it is nonzero and is generated by each of its nonzero elements. * If the ring ''R'' is considered as a left module over itself, then its cyclic submodules are exactly its left principal ideals as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangular Matrix Ring
In algebra, a triangular matrix ring, also called a triangular ring, is a ring constructed from two rings and a bimodule. Definition If T and U are rings and M is a \left(U,T\right)-bimodule, then the triangular matrix ring R:=\left beginT&0\\M&U\\\end\right/math> consists of 2-by-2 matrices of the form \left begint&0\\m&u\\\end\right/math>, where t\in T,m\in M, and u\in U, with ordinary matrix addition and matrix multiplication as its operations. References *{{Citation , last1=Auslander , first1=Maurice , last2=Reiten , first2=Idun , last3=Smalø , first3=Sverre O. , title=Representation theory of Artin algebras , origyear=1995 , url=https://books.google.com/books?isbn=0521599237 , publisher=Cambridge University Press Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessme ... , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Domain (ring Theory)
In algebra, a domain is a nonzero ring in which implies or .Lam (2001), p. 3 (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain. Mathematical literature contains multiple variants of the definition of "domain".Some authors also consider the zero ring to be a domain: see Polcino M. & Sehgal (2002), p. 65. Some authors apply the term "domain" also to rngs with the zero-product property; such authors consider ''n''Z to be a domain for each positive integer ''n'': see Lanski (2005), p. 343. But integral domains are always required to be nonzero and to have a 1. Examples and non-examples * The ring \mathbb/6\mathbb is not a domain, because the images of 2 and 3 in this ring are nonzero elements with product 0. More generally, for a positive integer n, the ring \mathbb/n\mathbb is a d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weyl Algebra
In abstract algebra, the Weyl algebras are abstracted from the ring of differential operators with polynomial coefficients. They are named after Hermann Weyl, who introduced them to study the Heisenberg uncertainty principle in quantum mechanics. In the simplest case, these are differential operators. Let F be a field, and let F /math> be the ring of polynomials in one variable with coefficients in F. Then the corresponding Weyl algebra consists of differential operators of form : f_m(x) \partial_x^m + f_(x) \partial_x^ + \cdots + f_1(x) \partial_x + f_0(x) This is the first Weyl algebra A_1. The ''n''-th Weyl algebra A_n are constructed similarly. Alternatively, A_1 can be constructed as the quotient of the free algebra on two generators, ''q'' and ''p'', by the ideal generated by ( ,q- 1). Similarly, A_n is obtained by quotienting the free algebra on ''2n'' generators by the ideal generated by ( _i,q_j- \delta_), \quad \forall i, j = 1, \dots, nwhere \delta_ is the K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principal Ideal Domain
In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some authors such as Bourbaki refer to PIDs as principal rings. Principal ideal domains are mathematical objects that behave like the integers, with respect to divisibility: any element of a PID has a unique factorization into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If and are elements of a PID without common divisors, then every element of the PID can be written in the form , etc. Principal ideal domains are Noetherian, they are integrally closed, they are unique factorization domains and Dedekind domains. All Euclidean domains and all fields are principal ideal domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]