Free Lie Algebra
   HOME
*





Free Lie Algebra
In mathematics, a free Lie algebra over a field ''K'' is a Lie algebra generated by a set ''X'', without any imposed relations other than the defining relations of alternating ''K''-bilinearity and the Jacobi identity. Definition The definition of the free Lie algebra generated by a set ''X'' is as follows: : Let ''X'' be a set and i\colon X \to L a morphism of sets (function) from ''X'' into a Lie algebra ''L''. The Lie algebra ''L'' is called free on ''X'' if i is the universal morphism; that is, if for any Lie algebra ''A'' with a morphism of sets f\colon X \to A, there is a unique Lie algebra morphism g\colon L\to A such that f = g \circ i. Given a set ''X'', one can show that there exists a unique free Lie algebra L(X) generated by ''X''. In the language of category theory, the functor sending a set ''X'' to the Lie algebra generated by ''X'' is the free functor from the category of sets to the category of Lie algebras. That is, it is left adjoint to the forgetful functo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Magma
In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed. History and terminology The term ''groupoid'' was introduced in 1927 by Heinrich Brandt describing his Brandt groupoid (translated from the German ). The term was then appropriated by B. A. Hausmann and Øystein Ore (1937) in the sense (of a set with a binary operation) used in this article. In a couple of reviews of subsequent papers in Zentralblatt, Brandt strongly disagreed with this overloading of terminology. The Brandt groupoid is a groupoid in the sense used in category theory, but not in the sense used by Hausmann and Ore. Nevertheless, influential books in semigroup theory, including Clifford and Preston (1961) and Howie (1995) use groupoid in the sense of Hausmann and Ore. Hollings (2014) writes that the term ''groupoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing ''V'', in the sense of the corresponding universal property (see below). The tensor algebra is important because many other algebras arise as quotient algebras of ''T''(''V''). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bialgebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by giving an antipode to create a Hopf algebra structure. ''Note'': In this article, all a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shuffle Product
In mathematics, a shuffle algebra is a Hopf algebra with a basis corresponding to words on some set, whose product is given by the shuffle product ''X'' ⧢ ''Y'' of two words ''X'', ''Y'': the sum of all ways of interlacing them. The interlacing is given by the riffle shuffle permutation. The shuffle algebra on a finite set is the graded dual of the universal enveloping algebra of the free Lie algebra on the set. Over the rational numbers, the shuffle algebra is isomorphic to the polynomial algebra in the Lyndon words. The shuffle product occurs in generic settings in non-commutative algebras; this is because it is able to preserve the relative order of factors being multiplied together - the riffle shuffle permutation. This can be held in contrast to the divided power structure, which becomes appropriate when factors are commutative. Shuffle product The shuffle product of words of lengths ''m'' and ''n'' is a sum over the ways of interleaving the two words, as shown in the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hopf Algebra
Hopf is a German surname. Notable people with the surname include: *Eberhard Hopf (1902–1983), Austrian mathematician *Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician *Heinz Hopf (actor) (1934–2001), Swedish actor *Ludwig Hopf (1884–1939), German physicist *Maria Hopf Maria Hopf (13 September 1913 – 24 August 2008) was a pioneering archaeobotanist, based at the RGZM, Mainz. Career Hopf studied botany from 1941–44, receiving her doctorate in 1947 on the subject of soil microbes. She then worked in phyto ... (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shuffle Algebra
In mathematics, a shuffle algebra is a Hopf algebra with a basis corresponding to words on some set, whose product is given by the shuffle product ''X'' ⧢ ''Y'' of two words ''X'', ''Y'': the sum of all ways of interlacing them. The interlacing is given by the riffle shuffle permutation. The shuffle algebra on a finite set is the graded dual of the universal enveloping algebra of the free Lie algebra on the set. Over the rational numbers, the shuffle algebra is isomorphic to the polynomial algebra in the Lyndon words. The shuffle product occurs in generic settings in non-commutative algebras; this is because it is able to preserve the relative order of factors being multiplied together - the riffle shuffle permutation. This can be held in contrast to the divided power structure, which becomes appropriate when factors are commutative. Shuffle product The shuffle product of words of lengths ''m'' and ''n'' is a sum over the ways of interleaving the two words, as shown in the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Function
The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted . Definition For any positive integer , define as the sum of the primitive th roots of unity. It has values in depending on the factorization of into prime factors: * if is a square-free positive integer with an even number of prime factors. * if is a square-free positive integer with an odd number of prime factors. * if has a squared prime factor. The Möbius function can alternatively be represented as : \mu(n) = \delta_ \lambda(n), where is the Kronecker delta, is the Liouville function, is the number of dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Necklace Polynomial
In combinatorial mathematics, the necklace polynomial, or Moreau's necklace-counting function, introduced by , counts the number of distinct necklaces of ''n'' colored beads chosen out of α available colors. The necklaces are assumed to be aperiodic (not consisting of repeated subsequences), and counted up to rotation (rotating the beads around the necklace counts as the same necklace), but without flipping over (reversing the order of the beads counts as a different necklace). This counting function also describes, among other things, the dimensions in a free Lie algebra and the number of irreducible polynomials over a finite field. Definition The necklace polynomials are a family of polynomials M(\alpha,n) in the variable \alpha such that :\alpha^n \ =\ \sum_ d \, M(\alpha, d). By Möbius inversion they are given by : M(\alpha,n) \ =\ \sum_\mu\!\left(\right)\alpha^d, where \mu is the classic Möbius function. A closely related family, called the general necklace polynomi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Basic Commutator
In group theory, a branch of mathematics, the commutator collecting process is a method for writing an element of a group as a product of generators and their higher commutators arranged in a certain order. The commutator collecting process was introduced by Philip Hall in 1934 and articulated by Wilhelm Magnus in 1937. W. Magnus (1937), "Über Beziehungen zwischen höheren Kommutatoren", ''J. Grelle'' 177, 105-115. The process is sometimes called a "collection process". The process can be generalized to define a totally ordered subset of a free non-associative algebra, that is, a free magma; this subset is called the Hall set. Members of the Hall set are binary trees; these can be placed in one-to-one correspondence with words, these being called the Hall words; the Lyndon words are a special case. Hall sets are used to construct a basis for a free Lie algebra, entirely analogously to the commutator collecting process. Hall words also provide a unique factorization of monoids. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ernst Witt
Ernst Witt (26 June 1911 – 3 July 1991) was a German mathematician, one of the leading algebraists of his time. Biography Witt was born on the island of Alsen, then a part of the German Empire. Shortly after his birth, his parents moved the family to China to work as missionaries, and he did not return to Europe until he was nine. After his schooling, Witt went to the University of Freiburg and the University of Göttingen. He joined the NSDAP (Nazi Party) and was an active party member. Witt was awarded a Ph.D. at the University of Göttingen in 1934 with a thesis titled: "Riemann-Roch theorem and zeta-Function in hypercomplexes" (Riemann-Rochscher Satz und Zeta-Funktion im Hyperkomplexen) that was supervised by Gustav Herglotz with Emmy Noether suggesting the top for the doctorate. He qualified to become a lecturer and gave guest lectures in Göttingen and Hamburg. He became associated with the team led by Helmut Hasse who led his habilitation. In June 1936 gave his habil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]