Forall
   HOME
*





Forall
In mathematical logic, a universal quantification is a type of Quantification (logic), quantifier, a logical constant which is interpretation (logic), interpreted as "given any" or "for all". It expresses that a predicate (mathematical logic), predicate can be satisfiability, satisfied by every element (mathematics), member of a domain of discourse. In other words, it is the Predicate (mathematical logic), predication of a property (philosophy), property or binary relation, relation to every member of the domain. It logical assertion, asserts that a predicate within the scope (logic), scope of a universal quantifier is true of every Valuation (logic), value of a predicate variable. It is usually denoted by the turned A (∀) logical connective, logical operator Symbol (formal), symbol, which, when used together with a predicate variable, is called a universal quantifier ("", "", or sometimes by "" alone). Universal quantification is distinct from existential quantification, ''exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantification (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order logic, first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope (logic), scope is called a quantified formula. A quantified formula must contain a Free variables and bound variables, bound variable and a subformula specifying a property of the referent of that variable. The mostly commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as Dual (mathematics), duals; in classical logic, they are interdefinable using negation. They can also be used to define more complex quantifiers, as i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantification (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order logic, first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope (logic), scope is called a quantified formula. A quantified formula must contain a Free variables and bound variables, bound variable and a subformula specifying a property of the referent of that variable. The mostly commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as Dual (mathematics), duals; in classical logic, they are interdefinable using negation. They can also be used to define more complex quantifiers, as i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Existential Quantification
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("" or "" or "). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for ''all'' members of the domain. Some sources use the term existentialization to refer to existential quantification. Basics Consider a formula that states that some natural number multiplied by itself is 25. : 0·0 = 25, or 1·1 = 25, or 2·2 = 25, or 3·3 = 25, ... This would seem to be a logical disjunction because of the repeated use of "or". However, the ellipses make this impossible to integrate and to interpret it as a disjunction in formal logic. Instead, the statement could be rephrased more formally as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Satisfiability
In mathematical logic, a formula is ''satisfiable'' if it is true under some assignment of values to its variables. For example, the formula x+3=y is satisfiable because it is true when x=3 and y=6, while the formula x+1=x is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is ''valid'' if every assignment of values to its variables makes the formula true. For example, x+3=3+x is valid over the integers, but x+3=y is not. Formally, satisfiability is studied with respect to a fixed logic defining the syntax of allowed symbols, such as first-order logic, second-order logic or propositional logic. Rather than being syntactic, however, satisfiability is a semantic property because it relates to the ''meaning'' of the symbols, for example, the meaning of + in a formula such as x+1=x. Formally, we define an interpretation (or model) to be an assignment of values to the variables and an assignment of meaning to all other non-logical symbols, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Conditional
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logically Equivalent
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually und ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interpretation (logic)
An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics. The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation. In these contexts an interpretation is a function that provides the extension of symbols and strings of symbols of an object language. For example, an interpretation function could take the predicate ''T'' (for "tall") and assign it the extension (for "Abraham Lincoln"). Note that all our interpretation does is assign the extension to the non-logical constant ''T'', and does not make a claim about whether ''T'' is to stand for tall and 'a' f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Turned A
Turned A (capital: Ɐ, lowercase: ɐ, math symbol ∀) is a letter and symbol based upon the letter A. Modern Usage * Lowercase ɐ (in Roman or two story form) is used in the International Phonetic Alphabet to identify the near-open central vowel. This is not to be confused with the ''turned alpha'' or ''turned script a'', ɒ, which is used in the IPA for the open back rounded vowel. * The logical symbol ∀, has the same shape as a sans-serif capital turned A. It is used to represent universal quantification in predicate logic, where it is typically read as "for all". It was first used in this way by Gerhard Gentzen in 1935, by analogy with Giuseppe Peano's turned E notation for existential quantification and the later use of Peano's notation by Bertrand Russell. * In traffic engineering it is used to represent flow, the number of units (vehicles) passing a point in a unit of time. * It may also be used in unit rates. Historical Usage File:Turned A in Edward Lhuyd, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scope (logic)
In logic, the scope of a quantifier or a quantification is the range in the formula where the quantifier "engages in". It is put right after the quantifier, often in parentheses. Some authors describe this as including the variable put right after the forall or exists symbol. In the formula , for example, (or ) is the scope of the quantifier (or ). A variable in the formula is free, if and only if it does not occur in the scope of any quantifier for that variable. A term is free for a variable in the formula (i.e. free to substitute that variable that occurs free), if and only if that variable does not occur free in the scope of any quantifier for any variable in the term. See also * Modal scope fallacy A fallacy of necessity is a fallacy in the logic of a syllogism whereby a degree of unwarranted necessity is placed in the conclusion. Example :a) ''Bachelors are necessarily unmarried.'' :b) ''John is a bachelor.'' :Therefore, c) ''John cannot ... Notes {{reflist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]