HOME

TheInfoList



OR:

Logic is the study of correct
reason Reason is the capacity of Consciousness, consciously applying logic by Logical consequence, drawing conclusions from new or existing information, with the aim of seeking the truth. It is closely associated with such characteristically human activ ...
ing. It includes both
formal Formal, formality, informal or informality imply the complying with, or not complying with, some set of requirements (forms, in Ancient Greek). They may refer to: Dress code and events * Formal wear, attire for formal events * Semi-formal attire ...
and
informal logic Informal logic encompasses the principles of logic and logical thought outside of a formal setting (characterized by the usage of particular statements). However, the precise definition of "informal logic" is a matter of some dispute. Ralph H. J ...
. Formal logic is the science of deductively valid inferences or of
logical truth Logical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement whi ...
s. It is a formal science investigating how conclusions follow from
premise A premise or premiss is a true or false statement that helps form the body of an argument, which logically leads to a true or false conclusion. A premise makes a declarative statement about its subject matter which enables a reader to either agre ...
s in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical
formal system A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A for ...
that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies,
critical thinking Critical thinking is the analysis of available facts, evidence, observations, and arguments to form a judgement. The subject is complex; several different definitions exist, which generally include the rational, skeptical, and unbiased an ...
, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied
argument An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialect ...
s are expressed in
formal Formal, formality, informal or informality imply the complying with, or not complying with, some set of requirements (forms, in Ancient Greek). They may refer to: Dress code and events * Formal wear, attire for formal events * Semi-formal attire ...
or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics,
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
, and
linguistics Linguistics is the scientific study of human language. It is called a scientific study because it entails a comprehensive, systematic, objective, and precise analysis of all aspects of language, particularly its nature and structure. Lingu ...
. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually understood either as sentences or as
proposition In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, "meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the no ...
s and are characterized by their internal structure; complex propositions are made up of simpler propositions linked to each other by propositional connectives like \land (and) or \to (if...then). The truth of a proposition usually depends on the
denotation In linguistics and philosophy, the denotation of an expression is its literal meaning. For instance, the English word "warm" denotes the property of being warm. Denotation is contrasted with other aspects of meaning including connotation. For ins ...
s of its constituents. Logically true propositions constitute a special case since their truth depends only on the logical vocabulary used in them and not on the denotations of other terms. Arguments can be either correct or incorrect. An argument is correct if its premises support its conclusion. The strongest form of support is found in deductive arguments: it is impossible for their premises to be true and their conclusion to be false. Deductive arguments contrast with ampliative arguments, which may arrive in their conclusion at new information that is not present in the premises. However, it is possible for all their premises to be true while their conclusion is still false. Many arguments found in everyday discourse and the sciences are ampliative arguments, sometimes divided into inductive and
abductive Abductive reasoning (also called abduction,For example: abductive inference, or retroduction) is a form of logical inference formulated and advanced by American philosopher Charles Sanders Peirce beginning in the last third of the 19th centur ...
arguments. Inductive arguments usually take the form of
statistical Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industr ...
generalizations while abductive arguments are ''
inference Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word '' infer'' means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that ...
s to the best explanation''. Arguments that fall short of the standards of correct reasoning are called
fallacies A fallacy is the use of Validity (logic), invalid or otherwise faulty reasoning, or "wrong moves," in the construction of an argument which may appear stronger than it really is if the fallacy is not spotted. The term in the Western intellectual ...
. Systems of logic are theoretical frameworks for assessing the correctness of reasoning and arguments. Logic has been studied since
Antiquity Antiquity or Antiquities may refer to: Historical objects or periods Artifacts *Antiquities, objects or artifacts surviving from ancient cultures Eras Any period before the European Middle Ages (5th to 15th centuries) but still within the histo ...
; early approaches include Aristotelian logic, Stoic logic, Anviksiki, and the mohists. Modern formal logic has its roots in the work of late 19th-century mathematicians such as
Gottlob Frege Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic ph ...
. While Aristotelian logic focuses on reasoning in the form of
syllogism A syllogism ( grc-gre, συλλογισμός, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true ...
s, in the modern era its traditional dominance was replaced by classical logic, a set of fundamental logical intuitions shared by most logicians. It consists of
propositional logic Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations ...
, which only considers the logical relations on the level of propositions, and
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quanti ...
, which also articulates the internal structure of propositions using various linguistic devices, such as predicates and quantifiers. Extended logics accept the basic intuitions behind classical logic and extend it to other fields, such as
metaphysics Metaphysics is the branch of philosophy that studies the fundamental nature of reality, the first principles of being, identity and change, space and time, causality, necessity, and possibility. It includes questions about the nature of conscio ...
,
ethics Ethics or moral philosophy is a branch of philosophy that "involves systematizing, defending, and recommending concepts of right and wrong behavior".''Internet Encyclopedia of Philosophy'' The field of ethics, along with aesthetics, concerns ...
, and
epistemology Epistemology (; ), or the theory of knowledge, is the branch of philosophy concerned with knowledge. Epistemology is considered a major subfield of philosophy, along with other major subfields such as ethics, logic, and metaphysics. Episte ...
. Deviant logics, on the other hand, reject certain classical intuitions and provide alternative accounts of the fundamental laws of logic.


Definition

The word "logic" originates from the Greek word "logos", which has a variety of translations, such as
reason Reason is the capacity of Consciousness, consciously applying logic by Logical consequence, drawing conclusions from new or existing information, with the aim of seeking the truth. It is closely associated with such characteristically human activ ...
,
discourse Discourse is a generalization of the notion of a conversation to any form of communication. Discourse is a major topic in social theory, with work spanning fields such as sociology, anthropology, continental philosophy, and discourse analysis. ...
, or
language Language is a structured system of communication. The structure of a language is its grammar and the free components are its vocabulary. Languages are the primary means by which humans communicate, and may be conveyed through a variety of ...
. Logic is traditionally defined as the study of the laws of thought or correct
reasoning Reason is the capacity of consciously applying logic by drawing conclusions from new or existing information, with the aim of seeking the truth. It is closely associated with such characteristically human activities as philosophy, science, lang ...
, and is usually understood in terms of
inference Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word '' infer'' means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that ...
s or
argument An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialect ...
s. Reasoning may be seen as the activity of drawing inferences whose outward expression is given in arguments. An inference or an argument is a set of premises together with a conclusion. Logic is interested in whether arguments are good or inferences are valid, i.e. whether the premises support their conclusions. These general characterizations apply to logic in the widest sense since they are true both for formal and informal logic, but many definitions of logic focus on the more paradigmatic formal logic. In this narrower sense, logic is a formal science that studies how conclusions follow from premises in a topic-neutral way. In this regard, logic is sometimes contrasted with the theory of rationality, which is wider since it covers all forms of good reasoning. As a formal science, logic contrasts with both the
natural Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
and
social science Social science is one of the branches of science, devoted to the study of societies and the relationships among individuals within those societies. The term was formerly used to refer to the field of sociology, the original "science of soc ...
s in that it tries to characterize the inferential relations between premises and conclusions based on their structure alone. This means that the actual content of these propositions, i.e. their specific topic, is not important for whether the inference is valid or not. Valid inferences are characterized by the fact that the truth of their premises ensures the truth of their conclusion: it is impossible for the premises to be true and the conclusion to be false. The general logical structures characterizing valid inferences are called rules of inference. In this sense, logic is often defined as the study of valid inference. This contrasts with another prominent characterization of logic as the science of
logical truth Logical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement whi ...
s. A proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true in all
possible world A possible world is a complete and consistent way the world is or could have been. Possible worlds are widely used as a formal device in logic, philosophy, and linguistics in order to provide a semantics for intensional and modal logic. Their ...
s and under all interpretations of its non-logical terms. These two characterizations of logic are closely related to each other: an inference is valid if the
material conditional The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol \rightarrow is interpreted as material implication, a formula P \rightarrow Q is true unless P is true and Q i ...
from its premises to its conclusion is logically true. The term "logic" can also be used in a slightly different sense as a countable noun. In this sense, ''a logic'' is a logical
formal system A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A for ...
. Different logics differ from each other concerning the formal languages used to express them and, most importantly, concerning the rules of inference they accept as valid. Starting in the 20th century, many new formal systems have been proposed. There are various disagreements concerning what makes a formal system a logic. For example, it has been suggested that only logically complete systems qualify as logics. For such reasons, some theorists deny that
higher-order logic mathematics and logic, a higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expres ...
s and
fuzzy logic Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and complet ...
are logics in the strict sense.


Formal and informal logic

Logic encompasses both formal and
informal logic Informal logic encompasses the principles of logic and logical thought outside of a formal setting (characterized by the usage of particular statements). However, the precise definition of "informal logic" is a matter of some dispute. Ralph H. J ...
. Formal logic is the traditionally dominant field, but applying its insights to actual everyday arguments has prompted modern developments of informal logic, which considers problems that formal logic on its own is unable to address. Both provide criteria for assessing the correctness of arguments and distinguishing them from fallacies. Various suggestions have been made concerning how to draw the distinction between the two but there is no universally accepted answer. The most literal approach sees the terms "formal" and "informal" as applying to the language used to express arguments. On this view, formal logic studies arguments expressed in formal languages while informal logic studies arguments expressed in informal or
natural language In neuropsychology, linguistics, and philosophy of language, a natural language or ordinary language is any language that has evolved naturally in humans through use and repetition without conscious planning or premeditation. Natural languag ...
s. This means that the inference from the formulas and to the conclusion is studied by formal logic. The inference from the English sentences "Al lit a cigarette" and "Bill stormed out of the room" to the sentence "Al lit a cigarette and Bill stormed out of the room", on the other hand, belongs to informal logic. Formal languages are characterized by their precision and simplicity. They normally contain a very limited vocabulary and exact rules on how their symbols can be used to construct sentences, usually referred to as
well-formed formula In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be ...
s. This simplicity and exactness of formal logic make it capable of formulating precise rules of inference that determine whether a given argument is valid. This approach brings with it the need to translate natural language arguments into the formal language before their validity can be assessed, a procedure that comes with various problems of its own. Informal logic avoids some of these problems by analyzing natural language arguments in their original form without the need of translation. But it faces problems associated with the
ambiguity Ambiguity is the type of meaning in which a phrase, statement or resolution is not explicitly defined, making several interpretations plausible. A common aspect of ambiguity is uncertainty. It is thus an attribute of any idea or statement w ...
, vagueness, and context-dependence of natural language expressions. A closely related approach applies the terms "formal" and "informal" not just to the language used, but more generally to the standards, criteria, and procedures of argumentation. Another approach draws the distinction according to the different types of inferences analyzed. This perspective understands formal logic as the study of
deductive inference Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. if it is impossible for the premises to be true and the conclusion to be false ...
s in contrast to informal logic as the study of non-deductive inferences, like inductive or abductive inferences. The characteristic of deductive inferences is that the truth of their premises ensures the truth of their conclusion. This means that if all the premises are true, it is impossible for the conclusion to be false. For this reason, deductive inferences are in a sense trivial or uninteresting since they do not provide the thinker with any new information not already found in the premises. Non-deductive inferences, on the other hand, are ampliative: they help the thinker learn something above and beyond what is already stated in the premises. They achieve this at the cost of certainty: even if all premises are true, the conclusion of an ampliative argument may still be false. One more approach tries to link the difference between formal and informal logic to the distinction between
formal Formal, formality, informal or informality imply the complying with, or not complying with, some set of requirements (forms, in Ancient Greek). They may refer to: Dress code and events * Formal wear, attire for formal events * Semi-formal attire ...
and informal fallacies. This distinction is often drawn in relation to the ''
form Form is the shape, visual appearance, or configuration of an object. In a wider sense, the form is the way something happens. Form also refers to: * Form (document), a document (printed or electronic) with spaces in which to write or enter dat ...
'', ''content'', and '' context'' of arguments. In the case of formal fallacies, the error is found on the level of the argument's form, whereas for informal fallacies, the content and context of the argument are responsible. Formal logic abstracts away from the argument's content and is only interested in its form, specifically whether it follows a valid rule of inference. In this regard, it is not important for the validity of a formal argument whether its premises are true or false. Informal logic, on the other hand, also takes the content and context of an argument into consideration. A false dilemma, for example, involves an error of content by excluding viable options, as in "you are either with us or against us; you are not with us; therefore, you are against us". For the strawman fallacy, on the other hand, the error is found on the level of context: a weak position is first described and then defeated, even though the opponent does not hold this position. But in another context, against an opponent that actually defends the strawman position, the argument is correct. Other accounts draw the distinction based on investigating general forms of arguments in contrast to particular instances or on the study of logical constants instead of substantive
concept Concepts are defined as abstract ideas. They are understood to be the fundamental building blocks of the concept behind principles, thoughts and beliefs. They play an important role in all aspects of cognition. As such, concepts are studied by s ...
s. A further approach focuses on the discussion of logical topics with or without formal devices or on the role of
epistemology Epistemology (; ), or the theory of knowledge, is the branch of philosophy concerned with knowledge. Epistemology is considered a major subfield of philosophy, along with other major subfields such as ethics, logic, and metaphysics. Episte ...
for the assessment of arguments.


Fundamental concepts


Premises, conclusions, and truth


Premises and conclusions

''Premises'' and ''conclusions'' are the basic parts of inferences or arguments and therefore play a central role in logic. In the case of a valid inference or a correct argument, the conclusion follows from the premises, or in other words, the premises support the conclusion. For instance, the premises "Mars is red" and "Mars is a planet" support the conclusion "Mars is a red planet". It is generally accepted that premises and conclusions have to be
truth-bearer A truth-bearer is an entity that is said to be either true or false and nothing else. The thesis that some things are true while others are false has led to different theories about the nature of these entities. Since there is divergence of o ...
s.Though see imperative logic,
dynamic semantics Dynamic semantics is a framework in logic and natural language semantics that treats the meaning of a sentence as its potential to update a context. In static semantics, knowing the meaning of a sentence amounts to knowing when it is true; in dynam ...
, and inquisitive semantics for logical systems which narrow or generalize the notion of valid inference to other kinds of objects.
This means that they have a
truth value In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or ''false''). Computing In some prog ...
: they are either true or false. Thus contemporary philosophy generally sees them either as ''
proposition In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, "meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the no ...
s'' or as '' sentences''. Propositions are the
denotation In linguistics and philosophy, the denotation of an expression is its literal meaning. For instance, the English word "warm" denotes the property of being warm. Denotation is contrasted with other aspects of meaning including connotation. For ins ...
s of sentences and are usually understood as
abstract object In metaphysics, the distinction between abstract and concrete refers to a divide between two types of entities. Many philosophers hold that this difference has fundamental metaphysical significance. Examples of concrete objects include plants, hum ...
s. Propositional theories of premises and conclusions are often criticized because of the difficulties involved in specifying the identity criteria of abstract objects or because of naturalist considerations. These objections are avoided by seeing premises and conclusions not as propositions but as sentences, i.e. as concrete linguistic objects like the symbols displayed on a page of a book. But this approach comes with new problems of its own: sentences are often context-dependent and ambiguous, meaning an argument's validity would not only depend on its parts but also on its context and on how it is interpreted. In earlier work, premises and conclusions were understood in psychological terms as thoughts or judgments, in an approach known as " psychologism". This position was heavily criticized around the turn of the 20th century.


Internal structure

Premises and conclusions have internal structure. As propositions or sentences, they can be either simple or complex. A complex proposition has other propositions as its constituents, which are linked to each other through propositional connectives like "and" or "if...then". Simple propositions, on the other hand, do not have propositional parts. But they can also be conceived as having an internal structure: they are made up of subpropositional parts, like singular terms and predicates. For example, the simple proposition "Mars is red" can be formed by applying the predicate "red" to the singular term "Mars". In contrast, the complex proposition "Mars is red and Venus is white" is made up of two simple propositions connected by the propositional connective "and". Whether a proposition is true depends, at least in part, on its constituents. For complex propositions formed using truth-functional propositional connectives, their truth only depends on the truth values of their parts. But this relation is more complicated in the case of simple propositions and their subpropositional parts. These subpropositional parts have meanings of their own, like referring to objects or classes of objects. Whether the simple proposition they form is true depends on their relation to reality, i.e. what the objects they refer to are like. This topic is studied by
theories of reference In analytic philosophy, philosophy of language investigates the nature of language and the relations between language, language users, and the world. Investigations may include inquiry into the nature of Meaning (philosophy of language), meanin ...
.


Logical truth

In some cases, a simple or a complex proposition is true independently of the substantive meanings of its parts. For example, the complex proposition "if Mars is red, then Mars is red" is true independent of whether its parts, i.e. the simple proposition "Mars is red", are true or false. In such cases, the truth is called a logical truth: a proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true under all interpretations of its non-logical terms. In some modal logics, this notion can be understood equivalently as truth at all possible worlds. Logical truth plays an important role in logic and some theorists even define logic as the study of logical truths.


Truth tables

Truth table A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra (logic), Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expression (mathematics) ...
s can be used to show how logical connectives work or how the truth of complex propositions depends on their parts. They have a column for each input variable. Each row corresponds to one possible combination of the truth values these variables can take. The final columns present the truth values of the corresponding expressions as determined by the input values. For example, the expression uses the logical connective \land (and). It could be used to express a sentence like "yesterday was Sunday and the weather was good". It is only true if both of its input variables, p ("yesterday was Sunday") and q ("the weather was good"), are true. In all other cases, the expression as a whole is false. Other important logical connectives are \lor (or), \to (if...then), and \lnot (not). Truth tables can also be defined for more complex expressions that use several propositional connectives. For example, given the conditional proposition p \to q, one can form truth tables of its
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse (negation), the inverse of a number that, when ad ...
, and its contraposition .


Arguments and inferences

Logic is commonly defined in terms of arguments or inferences as the study of their correctness. An ''argument'' is a set of premises together with a conclusion. An ''inference'' is the process of reasoning from these premises to the conclusion. But these terms are often used interchangeably in logic. Arguments are correct or incorrect depending on whether their premises support their conclusion. Premises and conclusions, on the other hand, are true or false depending on whether they are in accord with
reality Reality is the sum or aggregate of all that is real or existent within a system, as opposed to that which is only imaginary. The term is also used to refer to the ontological status of things, indicating their existence. In physical terms, r ...
. In formal logic, a
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
argument is an argument that is both correct and has only true premises. Sometimes a distinction is made between simple and complex arguments. A complex argument is made up of a chain of simple arguments. These simple arguments constitute a ''chain'' because the conclusions of the earlier arguments are used as premises in the later arguments. For a complex argument to be successful, each link of the chain has to be successful. Arguments and inferences are either are correct or incorrect. If they are correct then their premises support their conclusion. In the incorrect case, this support is missing. It can take different forms corresponding to the different types of reasoning. The strongest form of support corresponds to
deductive reasoning Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. if it is impossible for the premises to be true and the conclusion to be false ...
. But even arguments that are not deductively valid may still constitute good arguments because their premises offer non-deductive support to their conclusions. For such cases, the term ''ampliative'' or ''inductive reasoning'' is used. Deductive arguments are associated with formal logic in contrast to the relation between ampliative arguments and informal logic.


Deductive

A ''deductively
valid Validity or Valid may refer to: Science/mathematics/statistics: * Validity (logic), a property of a logical argument * Scientific: ** Internal validity, the validity of causal inferences within scientific studies, usually based on experiments ** ...
argument'' is one whose premises guarantee the truth of its conclusion. For instance, the argument "Victoria is tall; Victoria has brown hair; therefore Victoria is tall and has brown hair" is deductively valid. For deductive validity, it does not matter whether the premises or the conclusion are actually true. So the argument "trees can speak the English language; therefore trees can speak a language" is valid because, if the premise were true, the conclusion would be true as well.
Alfred Tarski Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician ...
holds that deductive arguments have three essential features: (1) they are formal, i.e. they depend only on the form of the premises and the conclusion; (2) they are a priori, i.e. no sense experience is needed to determine whether they obtain; (3) they are modal, i.e. that they hold by logical necessity for the given propositions, independent of any other circumstances. Because of the first feature, the focus on formality, deductive inference is usually identified with rules of inference. Rules of inference specify how the premises and the conclusion have to be structured for the inference to be valid. Arguments that do not follow any rule of inference are deductively invalid. The modus ponens is a prominent rule of inference. It has the form "''p''; if ''p'', then ''q''; therefore ''q''". Knowing that it has just rained (p) and that after rain the streets are wet (p \to q), one can use modus ponens to deduce that the streets are wet (q). The third feature can be expressed by stating that deductively valid inferences are truth-preserving: it is impossible for the premises to be true and the conclusion to be false. Because of this feature, it is often asserted that deductive inferences are uninformative since the conclusion cannot arrive at new
information Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random, ...
not already present in the premises. But this point is not always accepted since it would mean, for example, that most of mathematics is uninformative. A different characterization distinguishes between surface and depth information. On this view, deductive inferences are uninformative on the depth level but can be highly informative on the surface level, as may be the case for various mathematical proofs.


Ampliative

Ampliative inferences, on the other hand, are informative even on the depth level. They are more interesting in this sense since the thinker may acquire substantive information from them and thereby learn something genuinely new. But this feature comes with a certain cost: the premises support the conclusion in the sense that they make its truth more likely but they do not ensure its truth. This means that the conclusion of an ampliative argument may be false even though all its premises are true. This characteristic is closely related to '' non-monotonicity'' and '' defeasibility'': it may be necessary to retract an earlier conclusion upon receiving new information or in the light of new inferences drawn. Ampliative reasoning is of central importance since many arguments found in everyday discourse and the
science Science is a systematic endeavor that Scientific method, builds and organizes knowledge in the form of Testability, testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earli ...
s are ampliative. Ampliative arguments are not automatically incorrect. Instead, they just follow different standards of correctness. An important aspect of most ampliative arguments is that the support they provide for their conclusion comes in degrees. In this sense, the line between correct and incorrect arguments is blurry in some cases, as when the premises offer weak but non-negligible support. This contrasts with deductive arguments, which are either valid or invalid with nothing in-between. The terminology used to categorize ampliative arguments is inconsistent. Some authors use the term "induction" to cover all forms of non-deductive arguments. But in a more narrow sense, ''induction'' is only one type of ampliative argument besides ''abductive arguments''. Some authors also allow ''conductive arguments'' as one more type. In this narrow sense, induction is often defined as a form of
statistical Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industr ...
generalization. In this case, the premises of an inductive argument are many individual observations that all show a certain pattern. The conclusion then is a general law that this pattern always obtains. In this sense, one may infer that "all elephants are gray" based on one's past observations of the color of elephants. A closely related form of inductive inference has as its conclusion not a general law but one more specific instance, as when it is inferred that an elephant one has not seen yet is also gray. Some theorists stipulate that inductive inferences rest only on statistical considerations in order to distinguish them from abductive inference. Abductive inference may or may not take statistical observations into consideration. In either case, the premises offer support for the conclusion because the conclusion is the best
explanation An explanation is a set of statements usually constructed to describe a set of facts which clarifies the causes, context, and consequences of those facts. It may establish rules or laws, and may clarify the existing rules or laws in relat ...
of why the premises are true.On
abductive reasoning Abductive reasoning (also called abduction,For example: abductive inference, or retroduction) is a form of logical inference formulated and advanced by American philosopher Charles Sanders Peirce beginning in the last third of the 19th centur ...
, see: * Magnani, L. 2001. ''Abduction, Reason, and Science: Processes of Discovery and Explanation''. New York:
Kluwer Academic Plenum Publishers Wolters Kluwer N.V. () is a Dutch information services company. The company is headquartered in Alphen aan den Rijn, Netherlands (Global) and Philadelphia, United States (corporate). Wolters Kluwer in its current form was founded in 1987 with a m ...
. xvii. . * Josephson, John R., and Susan G. Josephson. 1994. ''Abductive Inference: Computation, Philosophy, Technology''. New York: Cambridge University Press. viii. . * Bunt, H. and W. Black. 2000. ''Abduction, Belief and Context in Dialogue: Studies in Computational Pragmatics'', (''Natural Language Processing'' 1). Amsterdam:
John Benjamins John Benjamins Publishing Company is an independent academic publisher in social sciences and humanities with its head office in Amsterdam, Netherlands. The company was founded in the 1960s by John and Claire Benjamins and is currently managed ...
. vi. .
In this sense, abduction is also called the ''inference to the best explanation''. For example, given the premise that there is a plate with breadcrumbs in the kitchen in the early morning, one may infer the conclusion that one's house-mate had a midnight snack and was too tired to clean the table. This conclusion is justified because it is the best explanation of the current state of the kitchen. For abduction, it is not sufficient that the conclusion explains the premises. For example, the conclusion that a burglar broke into the house last night, got hungry on the job, and had a midnight snack, would also explain the state of the kitchen. But this conclusion is not justified because it is not the best or most likely explanation.


Fallacies

Not all arguments live up to the standards of correct reasoning. When they do not, they are usually referred to as
fallacies A fallacy is the use of Validity (logic), invalid or otherwise faulty reasoning, or "wrong moves," in the construction of an argument which may appear stronger than it really is if the fallacy is not spotted. The term in the Western intellectual ...
. Their central aspect is not that their conclusion is false but that there is some flaw with the reasoning leading to this conclusion. So the argument "it is sunny today; therefore spiders have eight legs" is fallacious even though the conclusion is true. Some theorists give a more restrictive definition of fallacies by additionally requiring that they appear to be correct. This way, genuine fallacies can be distinguished from mere mistakes of reasoning due to carelessness. This explains why people tend to commit fallacies: because they have an alluring element that seduces people into committing and accepting them. However, this reference to appearances is controversial because it belongs to the field of
psychology Psychology is the scientific study of mind and behavior. Psychology includes the study of conscious and unconscious phenomena, including feelings and thoughts. It is an academic discipline of immense scope, crossing the boundaries betwe ...
, not logic, and because appearances may be different for different people. Fallacies are usually divided into formal and informal fallacies. For formal fallacies, the source of the error is found in the ''form'' of the argument. For example, denying the antecedent is one type of formal fallacy, as in "if Othello is a bachelor, then he is male; Othello is not a bachelor; therefore Othello is not male". But most fallacies fall into the category of informal fallacies, of which a great variety is discussed in the academic literature. The source of their error is usually found in the ''content'' or the ''context'' of the argument. Informal fallacies are sometimes categorized as fallacies of ambiguity, fallacies of presumption, or fallacies of relevance. For fallacies of ambiguity, the ambiguity and vagueness of natural language are responsible for their flaw, as in "feathers are light; what is light cannot be dark; therefore feathers cannot be dark". Fallacies of presumption have a wrong or unjustified premise but may be valid otherwise. In the case of fallacies of relevance, the premises do not support the conclusion because they are not relevant to it.


Definitory and strategic rules

The main focus of most logicians is to investigate the criteria according to which an argument is correct or incorrect. A fallacy is committed if these criteria are violated. In the case of formal logic, they are known as ''rules of inference''. They constitute definitory rules, which determine whether a certain inference is correct or which inferences are allowed. Definitory rules contrast with strategic rules. Strategic rules specify which inferential moves are necessary in order to reach a given conclusion based on a certain set of premises. This distinction does not just apply to logic but also to various games as well. In
chess Chess is a board game for two players, called White and Black, each controlling an army of chess pieces in their color, with the objective to checkmate the opponent's king. It is sometimes called international chess or Western chess to dist ...
, for example, the definitory rules dictate that
bishops A bishop is an ordained clergy member who is entrusted with a position of Episcopal polity, authority and oversight in a religious institution. In Christianity, bishops are normally responsible for the governance of dioceses. The role or offic ...
may only move diagonally while the strategic rules describe how the allowed moves may be used to win a game, for example, by controlling the center and by defending one's