Finiteness Theorem For A Proper Morphism
   HOME
*





Finiteness Theorem For A Proper Morphism
In mathematics, the base change theorems relate the direct image and the inverse image of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves: :g^*(R^r f_* \mathcal) \to R^r f'_*(g'^*\mathcal) where :\begin X' & \stackrel\to & X \\ f' \downarrow & & \downarrow f \\ S' & \stackrel g \to & S \end is a Cartesian square of topological spaces and \mathcal is a sheaf on ''X''. Such theorems exist in different branches of geometry: for (essentially arbitrary) topological spaces and proper maps ''f'', in algebraic geometry for (quasi-)coherent sheaves and ''f'' proper or ''g'' flat, similarly in analytic geometry, but also for étale sheaves for ''f'' proper or ''g'' smooth. Introduction A simple base change phenomenon arises in commutative algebra when ''A'' is a commutative ring and ''B'' and ''A' ''are two ''A''-algebras. Let B' = B \otimes_A A'. In this situation, given a ''B''-module ''M'', there is an isomorphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Image Functor
In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf ''F'' defined on a topological space ''X'' and a continuous map ''f'': ''X'' → ''Y'', we can define a new sheaf ''f''∗''F'' on ''Y'', called the direct image sheaf or the pushforward sheaf of ''F'' along ''f'', such that the global sections of ''f''∗''F'' is given by the global sections of ''F''. This assignment gives rise to a functor ''f''∗ from the category of sheaves on ''X'' to the category of sheaves on ''Y'', which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme. Definition Let ''f'': ''X'' → ''Y'' be a continuous map of topological spaces, and let Sh(–) denote the category of sheaves of abelian groups on a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Compact
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively compact neighbourhoo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Direct Image With Compact Support
In mathematics, the direct image with compact (or proper) support is an image functor for sheaves that extends the compactly supported global sections functor to the relative setting. It is one of Grothendieck's six operations. Definition Let ''f'': ''X'' → ''Y'' be a continuous mapping of locally compact Hausdorff topological spaces, and let Sh(–) denote the category of sheaves of abelian groups on a topological space. The direct image with compact (or proper) support is the functor :''f''!: Sh(''X'') → Sh(''Y'') that sends a sheaf ''F'' on ''X'' to the sheaf ''f''!(''F'') given by the formula :''f''!(''F'')(''U'') := for every open subset ''U'' of ''Y.'' Here, the notion of a proper map of spaces is unambiguous since the spaces in question are locally compact Hausdorff. This defines ''f''!(''F'') as a subsheaf of the direct image sheaf ''f''∗(''F''), and the functoriality of this construction then follows from basic properties of the support and the definition of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monodromy
In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of ''monodromy'' comes from "running round singly". It is closely associated with covering maps and their degeneration into ramification; the aspect giving rise to monodromy phenomena is that certain functions we may wish to define fail to be ''single-valued'' as we "run round" a path encircling a singularity. The failure of monodromy can be measured by defining a monodromy group: a group of transformations acting on the data that encodes what happens as we "run round" in one dimension. Lack of monodromy is sometimes called ''polydromy''. Definition Let be a connected and locally connected based topological space with base point , and let p: \tilde \to X be a covering with fiber F = p^(x). For a loop based at , denote a lift under the covering ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant (mathematics)
In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class. Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point— paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if one can be deformed into the other without breakin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local System
In mathematics, a local system (or a system of local coefficients) on a topological space ''X'' is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group ''A'', and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. The category of perverse sheaves on a manifold is equivalent to the category of local systems on the manifold. Definition Let ''X'' be a topological space. A local system (of abelian groups/modules/...) on ''X'' is a locally constant sheaf (of abelian groups/modules...) on ''X''. In other words, a sheaf \mathcal is a local system if every point has an open neighborhood U such that the restricted sheaf \mathcal, _U is isomorphic to the sheafification of some constant presheaf. Equivalent definitions Path-connected spaces If ''X'' is path-connected, a local system \mathcal of abelian groups has the same stalk ''L'' at eve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Set
In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-abelian Cohomology
In mathematics, a nonabelian cohomology is any cohomology with coefficients in a nonabelian group, a sheaf of nonabelian groups or even in a topological space. If homology is thought of as the abelianization of homotopy (cf. Hurewicz theorem), then the nonabelian cohomology may be thought of as a dual of homotopy groups. Nonabelian Poincaré duality SeeNonabelian Poincare Duality (Lecture 8) See also * Stacks *Group cohomology In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology loo ... References

* * {{topology-stub Cohomology theories ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]