Fan-in
   HOME
*



picture info

Fan-in
Fan-in is the number of inputs a logic gate can handle. For instance the fan-in for the AND gate shown in the figure is 3. Physical logic gates with a large fan-in tend to be slower than those with a small fan-in. This is because the complexity of the input circuitry increases the input capacitance of the device. Using logic gates with higher fan-in will help in reducing the depth of a logic circuit; this is because circuit design is realized by the target logic family at a digital level, meaning any large fan-in logic gates are simply the smaller fan-in gates chained together in series at a given depth to widen the circuit instead. Fan-in tree of a node refers to a collection of signals that contribute to the input signal of that node. In quantum logic gates the fan-in always has to be equal to the number of outputs, the Fan-out. Gates for which the numbers of inputs and outputs differ would not be reversible (unitary) and are therefore not allowed. See also * Fan-out In d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fan-out
In digital electronics, the fan-out is the number of gate inputs driven by the output of another single logic gate. In most designs, logic gates are connected to form more complex circuits. While no logic gate input can be fed by more than one output at a time without causing contention, it is common for one output to be connected to several inputs. The technology used to implement logic gates usually allows a certain number of gate inputs to be wired directly together without additional interfacing circuitry. The maximum fan-out of an output measures its load-driving capability: it is the greatest number of inputs of gates of the same type to which the output can be safely connected. Logical practice Maximum limits on fan-out are usually stated for a given logic family or device in the manufacturer's datasheets. These limits assume that the driven devices are members of the same family. More complex analysis than fan-in and fan-out is required when two different logic fami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic Gate
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see Ideal and real op-amps for comparison). Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also be constructed using vacuum tubes, electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. Now, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms and mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AND Gate
The AND gate is a basic digital logic gate that implements logical conjunction (∧) from mathematical logic AND gate behaves according to the truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If not all inputs to the AND gate are HIGH, LOW output results. The function can be extended to any number of inputs. Symbols There are three symbols for AND gates: the American (ANSI or 'military') symbol and the IEC ('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. Additional inputs can be added as needed. For more information see Logic gate symbols article. It can also be denoted as symbol "^" or "&". The AND gate with inputs ''A'' and ''B'' and output ''C'' implements the logical expression C = A \cdot B. This expression also may be denoted as C=A \wedge B or C=A \And B. Implementations An AND gate can be designed using only N-channel (pictured) or P-channel MOSFETs, but is usually implemented with both (CMOS). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Capacitance
Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: ''self capacitance'' and ''mutual capacitance''. An object that can be electrically charged exhibits self capacitance, for which the electric potential is measured between the object and ground. Mutual capacitance is measured between two components, and is particularly important in the operations of the capacitor, a device designed for this purpose as an elementary Linear circuit, linear electronic component. Capacitance is a function only of the geometry of the design of the capacitor, e.g., the opposing surface area of the plates and the distance between them, and the permittivity of the dielectric material between the plates. For many dielectric materials, the permittivity and thus the capaci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Logic Gate
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates. For example, the reversible Toffoli gate can implement all Boolean functions, often at the cost of having to use ancilla bits. The Toffoli gate has a direct quantum equivalent, showing that quantum circuits can perform all operations performed by classical circuits. Quantum gates are unitary operators, and are described as unitary matrices relative to some basis. Usually we use the ''computational basis'', which unless we compare it with something, just means that for a ''d''-level quantum system (such as a qubit, a quantum register ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reversible Computing
Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary condition for reversibility is that the relation of the mapping from states to their successors must be one-to-one. Reversible computing is a form of unconventional computing. Due to the unitarity of quantum mechanics, quantum circuits are reversible, as long as they do not "collapse" the quantum states they operate on. Reversibility There are two major, closely related types of reversibility that are of particular interest for this purpose: physical reversibility and logical reversibility. A process is said to be ''physically reversible'' if it results in no increase in physical entropy; it is isentropic. There is a style of circuit design ideally exhibiting this property that is referred to as charge recovery logic, adiabatic circui ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unitary Operator
In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating ''on'' a Hilbert space, but the same notion serves to define the concept of isomorphism ''between'' Hilbert spaces. A unitary element is a generalization of a unitary operator. In a unital algebra, an element of the algebra is called a unitary element if , where is the identity element. Definition Definition 1. A ''unitary operator'' is a bounded linear operator on a Hilbert space that satisfies , where is the adjoint of , and is the identity operator. The weaker condition defines an ''isometry''. The other condition, , defines a ''coisometry''. Thus a unitary operator is a bounded linear operator which is both an isometry and a coisometry, or, equivalently, a surjective isometry. An equivalent definition is the following: Definition 2. A ''unitary operator'' is a bounded linear operator on a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic Gates
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see Ideal and real op-amps for comparison). Logic gates are primarily implemented using diodes or transistors acting as electronic switches, but can also be constructed using vacuum tubes, electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. Now, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms and mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]