HOME
*





Function Algebra
In functional analysis, a Banach function algebra on a compact Hausdorff space ''X'' is unital subalgebra, ''A'', of the commutative C*-algebra ''C(X)'' of all continuous, complex-valued functions from ''X'', together with a norm on ''A'' that makes it a Banach algebra. A function algebra is said to vanish at a point ''p'' if ''f''(''p'') = 0 for all f\in A . A function algebra separates points if for each distinct pair of points p,q \in X , there is a function f\in A such that f(p) \neq f(q) . For every x\in X define \varepsilon_x(f)=f(x), for f\in A. Then \varepsilon_x is a homomorphism (character) on A, non-zero if A does not vanish at x. Theorem: A Banach function algebra is semisimple (that is its Jacobson radical is equal to zero) and each commutative unital, semisimple Banach algebra is isomorphic (via the Gelfand transform) to a Banach function algebra on its character space (the space of algebra homomorphisms from ''A'' into the complex numbers given the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unital Ring
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graham Allan
Graham Robert Allan (1936–2007) was an English mathematician, specializing in Banach algebras. He was Reader in functional analysis and Vice-Master of Churchill College at Cambridge University... Life Allan was born on 13 August 1936 in Southgate, Middlesex, England. After serving in the Royal Air Force from 1955 to 1957, he entered Sidney Sussex College, Cambridge, and continued at Cambridge for his graduate studies, receiving a PhD in 1964 under the supervision of Frank Smithies. Allan spent most of his career at Cambridge, with interludes as a Lecturer in Pure Mathematics at Newcastle University from 1967 to 1969 and as Professor of Pure Mathematics at the University of Leeds from 1970 to 1978. Back at Cambridge, he was promoted to Reader in 1980 and was Vice-Master of Churchill College from 1990 to 1993. Allan supervised the theses of over 20 Cambridge PhD students. He retired in 2003, but continued teaching after his retirement. He died on 9 August 2007 in Cambridge. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clarendon Press
Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books by decree in 1586, it is the second oldest university press after Cambridge University Press. It is a department of the University of Oxford and is governed by a group of 15 academics known as the Delegates of the Press, who are appointed by the vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, opposite Somerville College, in the inner suburb of Jericho. For the last 500 years, OUP has primarily focused on the publication of pedagogical texts and c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after the society's first president), at 57–5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Andrew Browder
Andrew Browder (January 8, 1931 – March 24, 2019) was an American mathematician at Brown University. Early life and education Andrew Browder was born in Moscow, Russia, where his father Earl Browder, an American communist from Kansas, United States, was living and working for a period. His mother was Raissa Berkmann, a Russian Jewish woman from St. Petersburg. His brothers were Felix Browder, also born in Moscow, and William Browder (mathematician), William Browder. Andrew, Felix and William have careers in mathematics. Their father returned to the United States in the early 1930s, bringing his family with him. The senior Browder became head of the Communist Party USA. He ran for US president in 1936 and 1940. The analytic nature of the game of chess enthralled Andrew early on: "My own main sport was always chess. My father taught me the game when I was six, a friend of the family gave me a chess book when I was eleven or twelve, and after that I was hooked." Career Andrew tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Algebra
In functional analysis, a uniform algebra ''A'' on a compact Hausdorff topological space ''X'' is a closed (with respect to the uniform norm) subalgebra of the C*-algebra ''C(X)'' (the continuous complex-valued functions on ''X'') with the following properties: :the constant functions are contained in ''A'' : for every ''x'', ''y'' \in ''X'' there is ''f''\in''A'' with ''f''(''x'')\ne''f''(''y''). This is called separating the points of ''X''. As a closed subalgebra of the commutative Banach algebra ''C(X)'' a uniform algebra is itself a unital commutative Banach algebra (when equipped with the uniform norm). Hence, it is, (by definition) a Banach function algebra. A uniform algebra ''A'' on ''X'' is said to be natural if the maximal ideals of ''A'' are precisely the ideals M_x of functions vanishing at a point ''x'' in ''X''. Abstract characterization If ''A'' is a unital commutative Banach algebra such that , , a^2, , = , , a, , ^2 for all ''a'' in ''A'', then there is a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak* Topology
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. One may call subsets of a topological vector space weakly closed (respectively, weakly compact, etc.) if they are closed (respectively, compact, etc.) with respect to the weak topology. Likewise, functions are sometimes called weakly continuous (respectively, weakly differentiable, weakly analytic, etc.) if they are continuous (respectively, differentiable, analytic, etc.) with respect to the weak topology. History Starting in the early 1900s, David Hilbert and Marcel Riesz made extensive use of weak convergence. The early pioneers of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relative Topology
In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced topology, or the trace topology). Definition Given a topological space (X, \tau) and a subset S of X, the subspace topology on S is defined by :\tau_S = \lbrace S \cap U \mid U \in \tau \rbrace. That is, a subset of S is open in the subspace topology if and only if it is the intersection of S with an open set in (X, \tau). If S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of (X, \tau). Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated. Alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map :\iota: S \hookrightarrow X is continuous. More ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Character Space
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" i ... that is complete metric space, complete in the metric (mathematics), metric induced by the norm. The norm is required to satisfy \, x \, y\, \ \leq \, x\, \, \, y\, \quad \text x, y \in A. This ensures that the multiplication operation is continuous function (topology), continuous. A Banach algebra is called ''unital'' if it has an identity element for the multiplication whose norm is 1, and ''commutative'' if its multiplication is commutative. Any Banach al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gelfand Transform
In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algebras, this representation is an isometric isomorphism. In the former case, one may regard the Gelfand representation as a far-reaching generalization of the Fourier transform of an integrable function. In the latter case, the Gelfand–Naimark representation theorem is one avenue in the development of spectral theory for normal operators, and generalizes the notion of diagonalizing a normal matrix. Historical remarks One of Gelfand's original applications (and one which historically motivated much of the study of Banach algebras) was to give a much shorter and more conceptual proof of a celebrated lemma of Norbert Wiener (see the citation below), characterizing the elements of the group algebras ''L''1(R) and \ell^1() whose transla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]