HOME
*





Free Ideal Ring
In mathematics, especially in the field of ring theory, a (right) free ideal ring, or fir, is a ring in which all right ideals are free modules with unique rank. A ring such that all right ideals with at most ''n'' generators are free and have unique rank is called an n-fir. A semifir is a ring in which all finitely generated right ideals are free modules of unique rank. (Thus, a ring is semifir if it is ''n''-fir for all ''n'' ≥ 0.) The semifir property is left-right symmetric, but the fir property is not. Properties and examples It turns out that a left and right fir is a domain. Furthermore, a commutative fir is precisely a principal ideal domain, while a commutative semifir is precisely a Bézout domain. These last facts are not generally true for noncommutative rings, however . Every principal right ideal domain ''R'' is a right fir, since every nonzero principal right ideal of a domain is isomorphic to ''R''. In the same way, a right Bézout domain is a semifir. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semihereditary Ring
In mathematics, especially in the area of abstract algebra known as module theory, a ring ''R'' is called hereditary if all submodules of projective modules over ''R'' are again projective. If this is required only for finitely generated submodules, it is called semihereditary. For a noncommutative ring ''R'', the terms left hereditary and left semihereditary and their right hand versions are used to distinguish the property on a single side of the ring. To be left (semi-)hereditary, all (finitely generated) submodules of projective ''left'' ''R''-modules must be projective, and similarly to be right (semi-)hereditary all (finitely generated) submodules of projective ''right'' ''R''-modules must be projective. It is possible for a ring to be left (semi-)hereditary but not right (semi-)hereditary and vice versa. Equivalent definitions * The ring ''R'' is left (semi-)hereditary if and only if all ( finitely generated) left ideals of ''R'' are projective modules. * The ring ''R'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Academic Press
Academic Press (AP) is an academic book publisher founded in 1941. It was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier. Academic Press publishes reference books, serials and online products in the subject areas of: * Communications engineering * Economics * Environmental science * Finance * Food science and nutrition * Geophysics * Life sciences * Mathematics and statistics * Neuroscience * Physical sciences * Psychology Well-known products include the ''Methods in Enzymology'' series and encyclopedias such as ''The International Encyclopedia of Public Health'' and the ''Encyclopedia of Neuroscience''. See also * Akademische Verlagsgesellschaft (AVG) — the German predecessor, founded in 1906 by Leo Jolowicz (1868–1940), the father of Walter Jolowicz Walter may refer to: People * Walter (name), both a surname and a given name * Little Walter, American blues harmonica player Marion Wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sylvester Domain
In mathematics, a Sylvester domain, named after James Joseph Sylvester by , is a ring in which Sylvester's law of nullity holds. This means that if ''A'' is an ''m'' by ''n'' matrix, and ''B'' is an ''n'' by ''s'' matrix over ''R'', then :ρ(''AB'') ≥ ρ(''A'') + ρ(''B'') – ''n'' where ρ is the inner rank of a matrix. The inner rank of an ''m'' by ''n'' matrix is the smallest integer ''r'' such that the matrix is a product of an ''m'' by ''r'' matrix and an ''r'' by ''n'' matrix. showed that fields Fields may refer to: Music * Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song b ... satisfy Sylvester's law of nullity and are, therefore, Sylvester domains. References * * Ring theory {{abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Non-commutative Polynomial Ring
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. Definition For ''R'' a commutative ring, the free (associative, unital) algebra on ''n'' indeterminates is the free ''R''-module with a basis consisting of all words over the alphabet (including the empty word, which is the unit of the free algebra). This ''R''-module becomes an ''R''-algebra by defining a multiplication as follows: the product of two basis elements is the concatenation of the corresponding words: :\left(X_X_ \cdots X_\right) \cdot \left(X_X_ \cdots X_\right) = X_X_ \cdots X_X_X_ \cdots X_, and the product of two arbitrary ''R''-module elements is thus uniquely determined (because the multiplication in an ''R''-algebra must be ''R''-bilinear). This ''R''- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dedekind Domain
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Lasker ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant Basis Number
In mathematics, more specifically in the field of ring theory, a ring has the invariant basis number (IBN) property if all finitely generated free left modules over ''R'' have a well-defined rank. In the case of fields, the IBN property becomes the statement that finite-dimensional vector spaces have a unique dimension. Definition A ring ''R'' has invariant basis number (IBN) if for all positive integers ''m'' and ''n'', ''R''''m'' isomorphic to ''R''''n'' (as left ''R''-modules) implies that . Equivalently, this means there do not exist distinct positive integers ''m'' and ''n'' such that ''R''''m'' is isomorphic to ''R''''n''. Rephrasing the definition of invariant basis number in terms of matrices, it says that, whenever ''A'' is an ''m''-by-''n'' matrix over ''R'' and ''B'' is an ''n''-by-''m'' matrix over ''R'' such that and , then . This form reveals that the definition is left–right symmetric, so it makes no difference whether we define IBN in terms of left or right mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Ring
In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non-units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x'' is any element of ''R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Module
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below. Every free module is a projective module, but the converse fails to hold over some rings, such as Dedekind rings that are not principal ideal domains. However, every projective module is a free module if the ring is a principal ideal domain such as the integers, or a polynomial ring (this is the Quillen–Suslin theorem). Projective modules were first introduced in 1956 in the influential book ''Homological Algebra'' by Henri Cartan and Samuel Eilenberg. Definitions Lifting property The usual category theoretical definition is in terms of the property of ''lifting'' that carries over from free to projective modules: a module ''P'' is projective if and only if for every surjective module homomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hereditary Ring
In mathematics, especially in the area of abstract algebra known as module theory, a ring ''R'' is called hereditary if all submodules of projective modules over ''R'' are again projective. If this is required only for finitely generated submodules, it is called semihereditary. For a noncommutative ring ''R'', the terms left hereditary and left semihereditary and their right hand versions are used to distinguish the property on a single side of the ring. To be left (semi-)hereditary, all (finitely generated) submodules of projective ''left'' ''R''-modules must be projective, and similarly to be right (semi-)hereditary all (finitely generated) submodules of projective ''right'' ''R''-modules must be projective. It is possible for a ring to be left (semi-)hereditary but not right (semi-)hereditary and vice versa. Equivalent definitions * The ring ''R'' is left (semi-)hereditary if and only if all ( finitely generated) left ideals of ''R'' are projective modules. * The ring ''R'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]