Extended Kalman Filter
   HOME
*





Extended Kalman Filter
In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the Kalman filter which linearizes about an estimate of the current mean and covariance. In the case of well defined transition models, the EKF has been considered the ''de facto'' standard in the theory of nonlinear state estimation, navigation systems and GPS. History The papers establishing the mathematical foundations of Kalman type filters were published between 1959 and 1961. The Kalman filter is the optimal linear estimator for ''linear'' system models with additive independent white noise in both the transition and the measurement systems. Unfortunately, in engineering, most systems are ''nonlinear'', so attempts were made to apply this filtering method to nonlinear systems; most of this work was done at NASA Ames. The EKF adapted techniques from calculus, namely multivariate Taylor series expansions, to linearize a model about a working point. If the system model (as described below) is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Estimation Theory
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An ''estimator'' attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered: * The probabilistic approach (described in this article) assumes that the measured data is random with probability distribution dependent on the parameters of interest * The set-membership approach assumes that the measured data vector belongs to a set which depends on the parameter vector. Examples For example, it is desired to estimate the proportion of a population of voters who will vote for a particular candidate. That proportion is the parameter sought; the estimate is based on a small random sample of voters. Alternatively, it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistency (statistics)
In statistics, consistency of procedures, such as computing confidence intervals or conducting hypothesis tests, is a desired property of their behaviour as the number of items in the data set to which they are applied increases indefinitely. In particular, consistency requires that the outcome of the procedure with unlimited data should identify the underlying truth.Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. (entries for consistency, consistent estimator, consistent test) Use of the term in statistics derives from Sir Ronald Fisher in 1922. Use of the terms ''consistency'' and ''consistent'' in statistics is restricted to cases where essentially the same procedure can be applied to any number of data items. In complicated applications of statistics, there may be several ways in which the number of data items may grow. For example, records for rainfall within an area might increase in three ways: records for additional time periods; records for additional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Filter
Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to solve filtering problems arising in signal processing and Bayesian statistical inference. The filtering problem consists of estimating the internal states in dynamical systems when partial observations are made and random perturbations are present in the sensors as well as in the dynamical system. The objective is to compute the posterior distributions of the states of a Markov process, given the noisy and partial observations. The term "particle filters" was first coined in 1996 by Del Moral about mean-field interacting particle methods used in fluid mechanics since the beginning of the 1960s. The term "Sequential Monte Carlo" was coined by Liu and Chen in 1998. Particle filtering uses a set of particles (also called samples) to represent the posterior distribution of a stochastic process given the noisy and/or partial observations. The state-space model can be nonlinear and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moving Horizon Estimation
Moving horizon estimation (MHE) is an optimization approach that uses a series of measurements observed over time, containing noise (random variations) and other inaccuracies, and produces estimates of unknown variables or parameters. Unlike deterministic approaches, MHE requires an iterative approach that relies on linear programming or nonlinear programming solvers to find a solution. MHE reduces to the Kalman filter under certain simplifying conditions. A critical evaluation of the extended Kalman filter and the MHE found that the MHE improved performance at the cost of increased computational expense. Because of the computational expense, MHE has generally been applied to systems where there are greater computational resources and moderate to slow system dynamics. However, in the literature there are some methods to accelerate this method. Overview The application of MHE is generally to estimate measured or unmeasured states of dynamical systems. Initial conditions and paramet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Invariant Extended Kalman Filter
The invariant extended Kalman filter (IEKF) (not to be confused with the iterated extended Kalman filter) was first introduced as a version of the extended Kalman filter (EKF) for nonlinear systems possessing symmetries (or ''invariances''), then generalized and recast as an adaptation to Lie groups of the linear Kalman filtering theory.Barrau, A., & Bonnabel, S. (2016). The invariant extended Kalman filter as a stable observer. IEEE Transactions on Automatic Control, 62(4), 1797-1812. Instead of using a linear correction term based on a linear output error, the IEKF uses a geometrically adapted correction term based on an invariant output error; in the same way the gain matrix is not updated from a linear state error, but from an invariant state error. The main benefit is that the gain and covariance equations have reduced dependence on the estimated value of the state. In some cases they converge to constant values on a much bigger set of trajectories than is the case for the EKF, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fast Kalman Filter
The fast Kalman filter (FKF), devised by Antti Lange (born 1941), is an extension of the Helmert–Wolf blocking (HWB) method from geodesy to safety-critical real-time applications of Kalman filtering (KF) such as GNSS navigation up to the centimeter-level of accuracy and satellite imaging of the Earth including atmospheric tomography. Motivation Kalman filters are an important filtering technique for building fault-tolerance into a wide range of systems, including real-time imaging. The ordinary Kalman filter is an optimal filtering algorithm for linear systems. However, an optimal Kalman filter is not stable (i.e. reliable) if Kalman's observability and controllability conditions are not continuously satisfied. These conditions are very challenging to maintain for any larger system. This means that even optimal Kalman filters may start diverging towards false solutions. Fortunately, the stability of an optimal Kalman filter can be controlled by monitoring its error variances ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ensemble Kalman Filter
The ensemble Kalman filter (EnKF) is a recursive filter suitable for problems with a large number of variables, such as discretizations of partial differential equations in geophysical models. The EnKF originated as a version of the Kalman filter for large problems (essentially, the covariance matrix is replaced by the sample covariance), and it is now an important data assimilation component of ensemble forecasting. EnKF is related to the particle filter (in this context, a particle is the same thing as an ensemble member) but the EnKF makes the assumption that all probability distributions involved are Gaussian; when it is applicable, it is much more efficient than the particle filter. Introduction The ensemble Kalman filter (EnKF) is a Monte Carlo implementation of the Bayesian update problem: given a probability density function (PDF) of the state of the modeled system (the ''prior'', called often the forecast in geosciences) and the data likelihood, Bayes' theorem is us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Taylor Series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series, when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century. The partial sum formed by the first terms of a Taylor series is a polynomial of degree that is called the th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally better as increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unscented Transform
The unscented transform (UT) is a mathematical function used to estimate the result of applying a given nonlinear transformation to a probability distribution that is characterized only in terms of a finite set of statistics. The most common use of the unscented transform is in the nonlinear projection of mean and covariance estimates in the context of nonlinear extensions of the Kalman filter. Its creator Jeffrey Uhlmann explained that "unscented" was an arbitrary name that he adopted to avoid it being referred to as the “Uhlmann filter” though others have indicated that "unscented" is a contrast to "scented" intended as a euphemism for "stinky" Background Many filtering and control methods represent estimates of the state of a system in the form of a mean vector and an associated error covariance matrix. As an example, the estimated 2-dimensional position of an object of interest might be represented by a mean position vector, , y/math>, with an uncertainty given in the form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment (mathematics)
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis. The mathematical concept is closely related to the concept of moment in physics. For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from to ) uniquely determines the distribution (Hausdorff moment problem). The same is not true on unbounded intervals (Hamburger moment problem). In the mid-nineteenth century, Pafnuty Chebyshev became the first person to think systematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymous adjective ''Gaussian'' is pronounced . Mathematics Algebra and linear algebra Geometry and differential geometry Number theory Cyclotomic fields *Gaussian period *Gaussian rational *Gauss sum, an exponential sum over Dirichlet characters ** Elliptic Gauss sum, an analog of a Gauss sum **Quadratic Gauss sum Analysis, numerical analysis, vector calculus and calculus of variations Complex analysis and convex analysis *Gauss–Lucas theorem *Gauss's continued fraction, an analytic continued fraction derived from the hypergeometric functions * Gauss's criterion – described oEncyclopedia of Mathematics* Gauss's hypergeometric theorem, an identity on hypergeometric series *Gauss plane Statistics *Gauss–Kuzmi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symmetry-preserving Filter
In mathematics, Symmetry-preserving observers,S. Bonnabel, Ph. Martin and E. Salaün, "Invariant Extended Kalman Filter: theory and application to a velocity-aided attitude estimation problem", 48th IEEE Conference on Decision and Control, pp. 1297-1304, 2009. also known as invariant filters, are estimation techniques whose structure and design take advantage of the natural symmetries (or invariances) of the considered nonlinear model. As such, the main benefit is an expected much larger domain of convergence than standard filtering methods, e.g. Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF). Motivation Most physical systems possess natural symmetries (or invariance), i.e. there exist transformations (e.g. rotations, translations, scalings) that leave the system unchanged. From mathematical and engineering viewpoints, it makes sense that a filter well-designed for the system being considered should preserve the same invariance properties. Definition Conside ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]