Exceptional Inverse Image Functor
   HOME





Exceptional Inverse Image Functor
In mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of image functors for sheaves. It is needed to express Verdier duality in its most general form. Definition Let ''f'': ''X'' → ''Y'' be a continuous map of topological spaces or a morphism of schemes. Then the exceptional inverse image is a functor :R''f''!: D(''Y'') → D(''X'') where D(–) denotes the derived category of sheaves of abelian groups or modules over a fixed ring. It is defined to be the right adjoint of the total derived functor R''f''! of the direct image with compact support. Its existence follows from certain properties of R''f''! and general theorems about existence of adjoint functors, as does the unicity. The notation R''f''! is an abuse of notation insofar as there is in general no functor ''f''! whose derived functor would be R''f''!. Examples and properties *If ''f'': ''X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Support (mathematics)
In mathematics, the support of a real-valued function f is the subset of the function domain of elements that are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. The notion of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poincaré Duality
In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology (mathematics), homology and cohomology group (mathematics), groups of manifolds. It states that if ''M'' is an ''n''-dimensional Orientability, oriented closed manifold (Compact space, compact and without boundary), then the ''k''th cohomology group of ''M'' is Group isomorphism, isomorphic to the th homology group of ''M'', for all integers ''k'' : H^k(M) \cong H_(M). Poincaré duality holds for any coefficient ring (mathematics), ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation. History A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The ''k''th and th Betti numbers of a closed (i.e., compact and witho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Direct Image With Compact Support
In mathematics, the direct image with compact (or proper) support is an Image functors for sheaves, image functor for Sheaf (mathematics), sheaves that extends the compactly supported global sections functor to the relative setting. It is one of Alexander Grothendieck , Grothendieck's six operations. Definition Let f:X\to Y be a continuous mapping of locally compact Hausdorff space, Hausdorff topological spaces, and let \mathrm(-) denote the category (mathematics), category of sheaves of abelian groups on a topological space. The direct image with compact (or proper) support (mathematics), support is the functor :f_:\mathrm(X)\to \mathrm(Y) that sends a sheaf \mathcal on X to the sheaf f_(\mathcal) given by the formula :f_(\mathcal)(U):=\ for every open subset U of Y. Here, the notion of a proper map of spaces is unambiguous since the spaces in question are locally compact Hausdorff. This defines f_(\mathcal) as a subsheaf of the Direct image functor, direct image sheaf f_*(\ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tate Twist
In number theory and algebraic geometry, the Tate twist, 'The Tate Twist', https://ncatlab.org/nlab/show/Tate+twist named after John Tate, is an operation on Galois modules. For example, if ''K'' is a field, ''GK'' is its absolute Galois group, and ρ : ''GK'' → AutQ''p''(''V'') is a representation of ''GK'' on a finite-dimensional vector space ''V'' over the field Q''p'' of ''p''-adic numbers, then the Tate twist of ''V'', denoted ''V''(1), is the representation on the tensor product ''V''⊗Q''p''(1), where Q''p''(1) is the ''p''-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure ''Ks'' of ''K''). More generally, if ''m'' is a positive integer In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ..., the ''m''th Tate twist o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Bundle
In mathematics, the canonical bundle of a non-singular algebraic variety V of dimension n over a field is the line bundle \,\!\Omega^n = \omega, which is the nth exterior power of the cotangent bundle \Omega on V. Over the complex numbers, it is the determinant bundle of the holomorphic cotangent bundle T^*V. Equivalently, it is the line bundle of holomorphic n-forms on V. This is the dualising object for Serre duality on V. It may equally well be considered as an invertible sheaf. The canonical class is the divisor class of a Cartier divisor K on V giving rise to the canonical bundle — it is an equivalence class for linear equivalence on V, and any divisor in it may be called a canonical divisor. An anticanonical divisor is any divisor −K with K canonical. The anticanonical bundle is the corresponding inverse bundle \omega^. When the anticanonical bundle of V is ample, V is called a Fano variety. The adjunction formula Suppose that X is a smooth variety and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orientation Sheaf
In the mathematical field of algebraic topology, the orientation sheaf on a manifold ''X'' of dimension ''n'' is a locally constant sheaf ''o''''X'' on ''X'' such that the stalk of ''o''''X'' at a point ''x'' is the local homology group :o_ = \operatorname_n(X, X - \) (in the integer coefficients or some other coefficients). Let \Omega^k_M be the sheaf of differential ''k''-forms on a manifold ''M''. If ''n'' is the dimension of ''M'', then the sheaf :\mathcal_M = \Omega^n_M \otimes \mathcal_M is called the sheaf of (smooth) densities on ''M''. The point of this is that, while one can integrate a differential form only if the manifold is oriented, one can always integrate a density, regardless of orientation or orientability; there is the integration map: :\textstyle \int_M: \Gamma_c(M, \mathcal_M) \to \mathbb. If ''M'' is oriented; i.e., the orientation sheaf of the tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inverse Image Functor
In mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map f : X \to Y, the inverse image functor is a functor from the category of sheaves on ''Y'' to the category of sheaves on ''X''. The direct image functor is the primary operation on sheaves, with the simplest definition. The inverse image exhibits some relatively subtle features. Definition Suppose we are given a sheaf \mathcal on Y and that we want to transport \mathcal to X using a continuous map f\colon X\to Y. We will call the result the ''inverse image'' or pullback sheaf f^\mathcal. If we try to imitate the direct image by setting :f^\mathcal(U) = \mathcal(f(U)) for each open set U of X, we immediately run into a problem: f(U) is not necessarily open. The best we could do is to approximate it by open sets, and even then we will get a presheaf and not a sheaf. Consequently, we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Immersion
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme ''S'' and a morphism an ''S''-morphism. !$@ A B C D E F G H I J K L M N O P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Morphism
In algebraic geometry, an étale morphism () is a morphism of Scheme (mathematics), schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology. The word ''étale'' is a French adjective, which means "slack", as in "slack tide", or, figuratively, calm, immobile, something left to settle. Definition Let \phi : R \to S be a ring homomorphism. This makes S an R-algebra. Choose a monic polynomial f in R[x] and a polynomial g in R[x] such that the Formal derivative, derivative f' of f is a unit in (R[x]/fR[x])_g. We say that \phi is ''stand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]