Epigraph (mathematics)
   HOME
*



picture info

Epigraph (mathematics)
In mathematics, the epigraph or supergraph of a function f : X \to \infty, \infty/math> valued in the extended real numbers \infty, \infty= \R \cup \ is the set, denoted by \operatorname f, of all points in the Cartesian product X \times \R lying on or above its graph. The strict epigraph \operatorname_S f is the set of points in X \times \R lying strictly above its graph. Importantly, although both the graph and epigraph of f consists of points in X \times \infty, \infty the epigraph consists of points in the subset X \times \R, which is not necessarily true of the graph of f. If the function takes \pm \infty as a value then \operatorname f will be a subset of its epigraph \operatorname f. For example, if f\left(x_0\right) = \infty then the point \left(x_0, f\left(x_0\right)\right) = \left(x_0, \infty\right) will belong to \operatorname f but not to \operatorname f. These two sets are nevertheless closely related because the graph can always be reconstructed from the epi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epigraph (literature)
In literature, an epigraph is a phrase, quotation, or poem that is set at the beginning of a document, monograph or section thereof. The epigraph may serve as a preface to the work; as a summary; as a counter-example; or as a link from the work to a wider literary canon, with the purpose of either inviting comparison or enlisting a conventional context. A book may have an overall epigraphy that is part of the front matter, or one for each chapter. Examples * As the epigraph to '' The Sum of All Fears'', Tom Clancy quotes Winston Churchill in the context of thermonuclear war:Why, you may take the most gallant sailor, the most intrepid airman or the most audacious soldier, put them at a table together – what do you get? The sum of their fears. * The long quotation from Dante's ''Inferno'' that prefaces T. S. Eliot's "The Love Song of J. Alfred Prufrock" is part of a speech by one of the damned in Dante's Hell. * The epigraph to E. L. Doctorow's ''Ragtime'' quotes Scott Joplin' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypograph (mathematics)
In mathematics, the hypograph or subgraph of a function f:\R^\rightarrow \R is the set of points lying on or below its graph. A related definition is that of such a function's epigraph, which is the set of points on or above the function's graph. The domain (rather than the codomain) of the function is not particularly important for this definition; it can be an arbitrary set instead of \mathbb^n. Definition The definition of the hypograph was inspired by that of the graph of a function, where the of f : X \to Y is defined to be the set :\operatorname f := \left\. The or of a function f : X \to \infty, \infty/math> valued in the extended real numbers \infty, \infty= \mathbb \cup \ is the set : \begin \operatorname f &= \left\ \\ &= \left f^(\infty) \times \mathbb \right\cup \bigcup_ \ \times (-\infty, f(x)]. \end Similarly, the set of points on or above the function is its epigraph. The is the hypograph with the graph removed: : \begin \operatorname_S f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Closed Set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold. Equivalent definitions By definition, a subset A of a topological space (X, \tau) is called if its complement X \setminus A is an open subset of (X, \tau); that is, if X \setminus A \in \tau. A set is closed in X if and only if it is equal to its closure in X. Equivalently, a set is closed if and only if it contains all of its limit points. Yet another equivalent definition is that a set is closed if and only if it contains all of its boundary points. Every subset A \subseteq X is always contained in its (topological) closure in X, which is denoted by \operatorname_X A; that is, if A \subseteq X then A \subseteq \oper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semi-continuity
In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f is upper (respectively, lower) semicontinuous at a point x_0 if, roughly speaking, the function values for arguments near x_0 are not much higher (respectively, lower) than f\left(x_0\right). A function is continuous if and only if it is both upper and lower semicontinuous. If we take a continuous function and increase its value at a certain point x_0 to f\left(x_0\right) + c for some c>0, then the result is upper semicontinuous; if we decrease its value to f\left(x_0\right) - c then the result is lower semicontinuous. The notion of upper and lower semicontinuous function was first introduced and studied by René Baire in his thesis in 1899. Definitions Assume throughout that X is a topological space and f:X\to\overline is a function with values in the extended real numbers \overline=\R \cup \ = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Half-space (geometry)
In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space. If the space is two-dimensional, then a half-space is called a half-plane (open or closed). A half-space in a one-dimensional space is called a ''half-line'' or '' ray''. More generally, a half-space is either of the two parts into which a hyperplane divides an affine space. That is, the points that are not incident to the hyperplane are partitioned into two convex sets (i.e., half-spaces), such that any subspace connecting a point in one set to a point in the other must intersect the hyperplane. A half-space can be either ''open'' or ''closed''. An open half-space is either of the two open sets produced by the subtraction of a hyperplane from the affine space. A closed half-space is the union of an open half-space and the hyperplane that defines it. A half-space may be specified by a linear inequality, derived from the linear equation that specifies the defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Function
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can be repre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Set
In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment (possibly empty). For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval with the property that its epigraph (the set of points on or above the graph of the function) is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infimum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and maxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Codomain
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either the codomain or image of a function. A codomain is part of a function if is defined as a triple where is called the ''domain'' of , its ''codomain'', and its ''graph''. The set of all elements of the form , where ranges over the elements of the domain , is called the ''image'' of . The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements in its codomain for which the equation does not have a solution. A codomain is not part of a function if is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class , in which case there is formally no such thing as a triple . With such a defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain Of A Function
In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. More precisely, given a function f\colon X\to Y, the domain of is . Note that in modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both subsets of \R, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the -axis of the graph, as the projection of the graph of the function onto the -axis. For a function f\colon X\to Y, the set is called the codomain, and the set of values attained by the function (which is a subset of ) is called its range or image. Any function can be restricted to a subset of its domain. The restriction of f \colon X \to Y to A, where A\subseteq X, is written as \left. f \_A \colon A \to Y. Natural domain If a real function is giv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]