Envy-freeness
   HOME





Envy-freeness
Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy. General definitions Suppose a certain resource is divided among several agents, such that every agent i receives a share X_i. Every agent i has a personal preference (economics), preference relation \succeq_i over different possible shares. The division is called envy-free (EF) if for all i and j: :::X_i \succeq_i X_j Another term for envy-freeness is no-envy (NE). If the preference of the agents are represented by a value functions V_i, then this definition is equivalent to: :::V_i(X_i) \geq V_i(X_j) Put another way: we say that agent i ''envies'' agent j if i prefers the piece of j over his own piece, i.e.: :::X_i \prec_i X_j :::V_i(X_i) 2 the problem is much harder. See e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rental Harmony
Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem. In the typical setting, there are n partners who rent together an n-room house for cost fixed by the homeowner. Each housemate may have different preferences — one may prefer a large room, another may prefer a room with a view to the main road, etc. The following two problems should be solved simultaneously: * (a) Assign a room to each partner, * (b) Determine the amount each partner should pay, such that the sum of payments equals the fixed cost. There are several properties that we would like the assignment to satisfy. * Non-negativity (NN): all prices must be 0 or more: no partner should be paid to get a room. * Envy-freeness (EF): Given a pricing scheme (an assignment of rent to rooms), we say that a partner ''prefers'' a given room if he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Round-robin Item Allocation
Round robin is a procedure for fair item allocation. It can be used to allocate several indivisible items among several people, such that the allocation is "almost" envy-free: each agent believes that the bundle they received is at least as good as the bundle of any other agent, when at most one item is removed from the other bundle. In sports, the round-robin procedure is called a draft. Setting There are ''m'' objects to allocate, and ''n'' people ("agents") with equal rights to these objects. Each person has different preferences over the objects. The preferences of an agent are given by a vector of values - a value for each object. It is assumed that the value of a bundle for an agent is the sum of the values of the objects in the bundle (in other words, the agents' valuations are an additive set function on the set of objects). Description The protocol proceeds as follows: # Number the people arbitrarily from 1 to n; # While there are unassigned objects: #* Let each p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Envy-free Item Allocation
Envy-free (EF) item allocation is a fair item allocation problem, in which the fairness criterion is envy-freeness - each agent should receive a bundle that they believe to be at least as good as the bundle of any other agent. Since the items are indivisible, an EF assignment may not exist. The simplest case is when there is a single item and at least two agents: if the item is assigned to one agent, the other will envy. One way to attain fairness is to use monetary transfers. When monetary transfers are not allowed or not desired, there are allocation algorithms providing various kinds of relaxations. Finding an envy-free allocation whenever it exists Preference-orderings on bundles: envy-freeness The undercut procedure finds a complete EF allocation for two agents, if-and-only-if such allocation exists. It requires the agents to rank bundles of items, but it does not require cardinal utility information. It works whenever the agents' preference relations are strictly monot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Envy Minimization
In computer science and operations research, the envy minimization problem is the problem of allocating discrete items among agents with different valuations over the items, such that the amount of envy is as small as possible. Ideally, from a fairness perspective, one would like to find an envy-free item allocation - an allocation in which no agent envies another agent. That is: no agent prefers the bundle allocated to another agent. However, with indivisible items this might be impossible. One approach for coping with this impossibility is to turn the problem to an optimization problem, in which the loss function is a function describing the amount of envy. In general, this optimization problem is NP-hard, since even deciding whether an envy-free allocation exists is equivalent to the partition problem. However, there are optimization algorithms that can yield good results in practice. Defining the amount of envy There are several ways to define the objective function (the amou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


No Justified Envy
In economics and social choice theory, a no-justified-envy matching is a matching in a two-sided market, in which no agent prefers the assignment of another agent and is simultaneously preferred by that assignment. Consider, for example, the task of matching doctors for residency in hospitals. Each doctor has a preference relation on hospitals, ranking the hospitals from best to worst. Each hospital has a preference relation on doctors, ranking the doctors from best to worst. Each doctor can work in at most one hospital, and each hospital can employ at most a fixed number of doctors (called the ''capacity'' of the hospital). The goal is to match doctors to hospitals, without monetary transfers. ''Envy'' is a situation in which some doctor ''d''1, employed in some hospital ''h''1, prefers some other hospital ''h''2, which employs some other doctor ''d''2 (we say that ''d1 envies d2''). The envy is ''justified'' if, at the same time, ''h''2 prefers ''d''1 over ''d''2. Note that, if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Envy-free Pricing
Envy-free pricing is a kind of fair item allocation. There is a single seller that owns some items, and a set of buyers who are interested in these items. The buyers have different valuations to the items, and they have a quasilinear utility function; this means that the utility an agent gains from a bundle of items equals the agent's value for the bundle minus the total price of items in the bundle. The seller should determine a price for each item, and sell the items to some of the buyers, such that there is Envy-freeness, ''no envy''. Two kinds of envy are considered: * ''Agent envy'' means that some agent assigns a higher utility (a higher difference value-price) to a bundle allocated to another agent. * ''Market envy'' means that some agent assigns a higher utility (a higher difference value-price) to any bundle. The no-envy conditions guarantee that the market is stable and that the buyers do not resent the seller. By definition, every market envy-free allocation is also agent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Envy
Envy is an emotion which occurs when a person lacks another's quality, skill, achievement, or possession and either desires it or wishes that the other lacked it. Envy can also refer to the wish for another person to lack something one already possesses so as to remove the equality of possession between both parties. Aristotle defined envy as pain at the sight of another's good fortune, stirred by "those who have what we ought to have". Bertrand Russell said that envy was one of the most potent causes of unhappiness. Recent research considered the conditions under which it occurs, how people deal with it, and whether it can inspire people to emulate those they envy. Types of envy Some languages, such as Dutch, distinguish between "benign envy" (''benijden'' in Dutch) and "malicious envy" (''afgunst''), pointing to the possibility that there are two subtypes of envy. Research shows that malicious envy is an unpleasant emotion that causes the envious person to want to bring do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Division
Fair division is the problem in game theory of dividing a set of resources among several people who have an Entitlement (fair division), entitlement to them so that each person receives their due share. The central tenet of fair division is that such a division should be performed by the players themselves, without the need for external arbitration, as only the players themselves really know how they value the goods. There are many different kinds of fair division problems, depending on the nature of goods to divide, the criteria for fairness, the nature of the players and their preferences, and other criteria for evaluating the quality of the division. The archetypal fair division algorithm is divide and choose. The research in fair division can be seen as an extension of this procedure to various more complex settings. Description In game theory, fair division is the problem of dividing a set of resources among several people who have an Entitlement (fair division), entitlem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inequity Aversion
Inequity aversion (IA) is the preference for fairness and resistance to incidental inequalities. The social sciences that study inequity aversion include sociology, economics, psychology, anthropology, and ethology. Researchers on inequity aversion aim to explain behaviors that are not purely driven by self-interests but fairness considerations. In some literature, the terminology inequality aversion was used in the places of inequity aversion. The discourses in social studies argue that "inequality" pertains to the gap between the distribution of resources, while "inequity" pertains to the fundamental and institutional unfairness. Therefore, the choice between using inequity or inequality aversion may depend on the specific context. Human studies Inequity aversion research on humans mostly occurs in the discipline of economics though it is also studied in sociology. Research on inequity aversion began in 1978 when studies suggested that humans are sensitive to inequities in fav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symmetric Fair Cake-cutting
Symmetric fair cake-cutting is a variant of the fair cake-cutting problem, in which fairness is applied not only to the final outcome, but also to the assignment of roles in the division procedure. As an example, consider a birthday cake that has to be divided between two children with different tastes, such that each child feels that his/her share is "fair", i.e., worth at least 1/2 of the entire cake. They can use the classic divide and choose procedure: Alice cuts the cake into two pieces worth exactly 1/2 in her eyes, and George chooses the piece that he considers more valuable. The outcome is always fair. However, the procedure is not symmetric: while Alice always gets a value of exactly 1/2 of her value, George may get much more than 1/2 of his value. Thus, while Alice does not envy George's share, she does envy George's role in the procedure. In contrast, consider the alternative procedure in which Alice and George both make half-marks on the cake, i.e., each of them marks t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, had already appeared in the 13th century, in the work of Ramon Llull. Such a drawing is sometimes referred to as a mystic rose. Properties The complete graph on vertices is denoted by . Some sources claim that the letter in this notation stands for the German word , but the German name for a complete graph, , does not contain the letter , and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory. has edg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Social Network
A social network is a social structure consisting of a set of social actors (such as individuals or organizations), networks of Dyad (sociology), dyadic ties, and other Social relation, social interactions between actors. The social network perspective provides a set of methods for analyzing the structure of whole social entities along with a variety of theories explaining the patterns observed in these structures. The study of these structures uses social network analysis to identify local and global patterns, locate influential entities, and examine dynamics of networks. For instance, social network analysis has been used in studying the spread of misinformation on social media platforms or analyzing the influence of key figures in social networks. Social networks and the analysis of them is an inherently Interdisciplinarity, interdisciplinary academic field which emerged from social psychology, sociology, statistics, and graph theory. Georg Simmel authored early structural th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]