End (graph Theory)
   HOME
*



picture info

End (graph Theory)
In the mathematics of infinite graphs, an end of a graph represents, intuitively, a direction in which the graph extends to infinity. Ends may be formalized mathematically as equivalence classes of infinite paths, as havens describing strategies for pursuit–evasion games on the graph, or (in the case of locally finite graphs) as topological ends of topological spaces associated with the graph. Ends of graphs may be used (via Cayley graphs) to define ends of finitely generated groups. Finitely generated infinite groups have one, two, or infinitely many ends, and the Stallings theorem about ends of groups provides a decomposition for groups with more than one end. Definition and characterization Ends of graphs were defined by in terms of equivalence classes of infinite paths. A in an infinite graph is a semi-infinite simple path; that is, it is an infinite sequence of vertices v_0,v_1,v_2,\dots in which each vertex appears at most once in the sequence and each two consecutive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexagonal Tiling
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling). English mathematician John Conway called it a hextille. The internal angle of the hexagon is 120 degrees, so three hexagons at a point make a full 360 degrees. It is one of three regular tilings of the plane. The other two are the triangular tiling and the square tiling. Applications The hexagonal tiling is the densest way to arrange circles in two dimensions. The honeycomb conjecture states that the hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin, who believed that the Kelvin structure (or body-centered cubic lattice) is optimal. However, the less regular Weaire–Phel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphism (graph Theory)
In graph theory, two graphs G and G' are homeomorphic if there is a graph isomorphism from some subdivision of G to some subdivision of G'. If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in illustrations), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if they are homeomorphic in the topological sense. Subdivision and smoothing In general, a subdivision of a graph ''G'' (sometimes known as an expansion) is a graph resulting from the subdivision of edges in ''G''. The subdivision of some edge ''e'' with endpoints yields a graph containing one new vertex ''w'', and with an edge set replacing ''e'' by two new edges, and . For example, the edge ''e'', with endpoints : can be subdivided into two edges, ''e''1 and ''e''2, connecting to a new vertex ''w'': The reverse operation, smoothing out or smoothing a vertex ''w'' with regards to the pair of edges (''e''1, ''e''2) inciden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Halin's Grid Theorem
In graph theory, a branch of mathematics, Halin's grid theorem states that the infinite graphs with thick ends are exactly the graphs containing subdivisions of the hexagonal tiling of the plane. It was published by , and is a precursor to the work of Robertson and Seymour linking treewidth to large grid minors, which became an important component of the algorithmic theory of bidimensionality. Definitions and statement A ray, in an infinite graph, is a semi-infinite path: a connected infinite subgraph in which one vertex has degree one and the rest have degree two. defined two rays ''r''0 and ''r''1 to be equivalent if there exists a ray ''r''2 that includes infinitely many vertices from each of them. This is an equivalence relation, and its equivalence classes (sets of mutually equivalent rays) are called the ends of the graph. defined a thick end of a graph to be an end that contains infinitely many rays that are pairwise disjoint from each other. An example of a graph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjoint Sets
In mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. Generalizations This definition of disjoint sets can be extended to a family of sets \left(A_i\right)_: the family is pairwise disjoint, or mutually disjoint if A_i \cap A_j = \varnothing whenever i \neq j. Alternatively, some authors use the term disjoint to refer to this notion as well. For families the notion of pairwise disjoint or mutually disjoint is sometimes defined in a subtly different manner, in that repeated identical members are allowed: the family is pairwise disjoint if A_i \cap A_j = \varnothing whenever A_i \neq A_j (every two ''distinct'' sets in the family are disjoint).. For example, the collection of sets is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spanning Tree
In the mathematical field of graph theory, a spanning tree ''T'' of an undirected graph ''G'' is a subgraph that is a tree which includes all of the vertices of ''G''. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of ''G'' are also edges of a spanning tree ''T'' of ''G'', then ''G'' is a tree and is identical to ''T'' (that is, a tree has a unique spanning tree and it is itself). Applications Several pathfinding algorithms, including Dijkstra's algorithm and the A* search algorithm, internally build a spanning tree as an intermediate step in solving the problem. In order to minimize the cost of power networks, wiring connections, piping, automatic speech recognition, etc., people often use algorithms that gradually build a spanning tree (or many such trees) as intermediate steps in the process of finding the minimum spanning tree. The Internet and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trémaux Tree
In graph theory, a Trémaux tree of an undirected graph G is a type of spanning tree, generalizing depth-first search trees. They are defined by the property that every edge of G connects an ancestor–descendant pair in the tree. Trémaux trees are named after Charles Pierre Trémaux, a 19th-century French author who used a form of depth-first search as a strategy for solving mazes. They have also been called normal spanning trees, especially in the context of infinite graphs. All depth-first search trees and all Hamiltonian paths are Trémaux trees. In finite graphs, every Trémaux tree is a depth-first search tree, but although depth-first search itself is inherently sequential, Trémaux trees can be constructed by a randomized parallel algorithm in the complexity class RNC. They can be used to define the tree-depth of a graph, and as part of the left-right planarity test for testing whether a graph is a planar graph. A characterization of Trémaux trees in the monadic second ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Space
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Interval
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology. In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: , , and . However, the notation ' is most commonly reserved for the closed interval . Properties The unit interval is a complete metric space, homeomorphic to the extended real number line. As a topological space, it is compact, contractible, path connected and locally path connected. The Hilbert cube is obtained by taking a topological product of countably many copies of the unit interval. In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1. Its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Set
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]