HOME
*





Exponential Polynomial
In mathematics, exponential polynomials are functions on fields, rings, or abelian groups that take the form of polynomials in a variable and an exponential function. Definition In fields An exponential polynomial generally has both a variable ''x'' and some kind of exponential function ''E''(''x''). In the complex numbers there is already a canonical exponential function, the function that maps ''x'' to '' e''''x''. In this setting the term exponential polynomial is often used to mean polynomials of the form ''P''(''x'', ''e''''x'') where ''P'' ∈ C 'x'', ''y''is a polynomial in two variables. There is nothing particularly special about C here; exponential polynomials may also refer to such a polynomial on any exponential field or exponential ring with its exponential function taking the place of ''e''''x'' above. Similarly, there is no reason to have one variable, and an exponential polynomial in ''n'' variables would be of the form ''P''(''x''1, ..., ''x''''n'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Abelian Group
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


O-minimal Structure
In mathematical logic, and more specifically in model theory, an infinite structure (''M'',<,...) which is totally ordered by < is called an o-minimal structure if and only if every definable subset ''X'' ⊂ ''M'' (with parameters taken from ''M'') is a finite of intervals and points. O-minimality can be regarded as a weak form of . A structure ''M'' is o-minimal if and only if every formula with one free variable and parameters in ''M'' is equivalent to a quantifier-free formula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilkie's Theorem
In mathematics, Wilkie's theorem is a result by Alex Wilkie about the theory of ordered fields with an exponential function, or equivalently about the geometric nature of exponential varieties. Formulations In terms of model theory, Wilkie's theorem deals with the language ''L''exp = (+, −, ·, ''m''. Gabrielov's theorem states that any formula in this language is equivalent to an existential one, as above. Hence the theory of the real ordered field with restricted analytic functions is model complete. Intermediate results Gabrielov's theorem applies to the real field with all restricted analytic functions adjoined, whereas Wilkie's theorem removes the need to restrict the function, but only allows one to add the exponential function. As an intermediate result Wilkie asked when the complement of a sub-analytic set could be defined using the same analytic functions that described the original set. It turns out the required functions are the Pfaffian function In mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analytic Geometry
In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and also in aviation, Aerospace engineering, rocketry, space science, and spaceflight. It is the foundation of most modern fields of geometry, including Algebraic geometry, algebraic, Differential geometry, differential, Discrete geometry, discrete and computational geometry. Usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and circles, often in two and sometimes three dimensions. Geometrically, one studies the Euclidean plane (two dimensions) and Euclidean space. As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometric shapes in a numerical way and extracting numerical information from shapes' numerical defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Auxiliary Function
Auxiliary may refer to: * A backup site or system In language * Auxiliary language (other) * Auxiliary verb In military and law enforcement * Auxiliary police * Auxiliaries, civilians or quasi-military personnel who provide support of some kind to a military service ** Auxiliaries (Roman military) In religion * Auxiliary bishop, in the Roman Catholic Church * Auxiliary organization (LDS Church) In technology * Auxiliary input jack and auxiliary cable, generally for audio; frequently associated with mobile device audio * Aux-send of a mixing console * An auxiliary Port is a common port found on many Cisco routers for CLI access. Other uses * Auxiliary route, also known as "special route", in road transportation ** An auxiliary route of the Interstate Highway System in the United States * Auxiliary ship is a naval vessel designed to operate in support of combat ships and other naval operations * Auxiliary (fraternity or sorority) * A marching band color guard See als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendental Number Theory
Transcendental number theory is a branch of number theory that investigates transcendental numbers (numbers that are not solutions of any polynomial equation with rational coefficients), in both qualitative and quantitative ways. Transcendence The fundamental theorem of algebra tells us that if we have a non-constant polynomial with rational coefficients (or equivalently, by clearing denominators, with integer coefficients) then that polynomial will have a root in the complex numbers. That is, for any non-constant polynomial P with rational coefficients there will be a complex number \alpha such that P(\alpha)=0. Transcendence theory is concerned with the converse question: given a complex number \alpha, is there a polynomial P with rational coefficients such that P(\alpha)=0? If no such polynomial exists then the number is called transcendental. More generally the theory deals with algebraic independence of numbers. A set of numbers is called algebraically independent ove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factor Theorem
In algebra, the factor theorem is a theorem linking factors and zeros of a polynomial. It is a special case of the polynomial remainder theorem. The factor theorem states that a polynomial f(x) has a factor (x - \alpha) if and only if f(\alpha)=0 (i.e. \alpha is a root). Factorization of polynomials Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent. The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows:. # Deduce the candidate of zero a of the polynomial f from its leading coefficient a_n and constant term a_0. (See Rational Root Theorem.) # Use the factor theorem to conclude that (x-a) is a factor of f(x). # Compute the polynomial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unique Factorization
In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of prime elements (or irreducible elements), uniquely up to order and units. Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field. Unique factorization domains appear in the following chain of class inclusions: Definition Formally, a unique factorization domain is defined to be an integral domain ''R'' in which every non-zero element ''x'' of ''R'' can be written as a product (an empty product if ''x'' is a unit) of irreducible elements ''p''i of ''R'' and a unit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]