Exponential Map In Lie Theory
   HOME
*





Exponential Map In Lie Theory
In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis. Important special cases include: * exponential map (Riemannian geometry) for a manifold with a Riemannian metric, * exponential map (Lie theory) from a Lie algebra to a Lie group, * More generally, in a manifold with an affine connection, X \mapsto \gamma_X(1), where \gamma_X is a geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ... with initial velocity ''X'', is sometimes also called the exponential map. The above two are special cases of this with respect to appropriate affine connections. * Euler's formula forming the unit circle in the complex plane. {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics". The exponential function satisfies the exponentiation identity e^ = e^x e^y \text x,y\in\mathbb, which, along with the definition e = \exp(1), shows that e^n=\underbrace_ for positive i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Map (Riemannian Geometry)
In Riemannian geometry, an exponential map is a map from a subset of a tangent space T''p''''M'' of a Riemannian manifold (or pseudo-Riemannian manifold) ''M'' to ''M'' itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection. Definition Let be a differentiable manifold and a point of . An affine connection on allows one to define the notion of a straight line through the point .A source for this section is , which uses the term "linear connection" where we use "affine connection" instead. Let be a tangent vector to the manifold at . Then there is a unique geodesic satisfying with initial tangent vector . The corresponding exponential map is defined by . In general, the exponential map is only ''locally defined'', that is, it only takes a small neighborhood of the origin at , to a neighborhood of in the manifold. This is because it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Map (Lie Theory)
In the theory of Lie groups, the exponential map is a map from the Lie algebra \mathfrak g of a Lie group G to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups. The ordinary exponential function of mathematical analysis is a special case of the exponential map when G is the multiplicative group of positive real numbers (whose Lie algebra is the additive group of all real numbers). The exponential map of a Lie group satisfies many properties analogous to those of the ordinary exponential function, however, it also differs in many important respects. Definitions Let G be a Lie group and \mathfrak g be its Lie algebra (thought of as the tangent space to the identity element of G). The exponential map is a map :\exp\colon \mathfrak g \to G which can be defined in several different ways. The typical modern definition is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Connection
In differential geometry, an affine connection is a geometric object on a smooth manifold which ''connects'' nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles. The notion of an affine connection has its roots in 19th-century geometry and tensor calculus, but was not fully developed until the early 1920s, by Élie Cartan (as part of his general theory of connections) and Hermann Weyl (who used the notion as a part of his foundations for general relativity). The terminology is due to Cartan and has its origins in the identification of tangent spaces in Euclidean space by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space. On any manifold of positive dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line". The noun '' geodesic'' and the adjective ''geodetic'' come from ''geodesy'', the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth, it is a segment of a great circle (see also great-circle distance). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory, one might consider a geodesic between two vertices/nodes of a graph. In a Riemannian manifold or submanifold, geodesics are characterised by the property of having vanishin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]