Exponential Map (Riemannian Geometry)
In Riemannian geometry, an exponential map is a map from a subset of a tangent space T''p''''M'' of a Riemannian manifold (or pseudo-Riemannian manifold) ''M'' to ''M'' itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection. Definition Let be a differentiable manifold and a point of . An affine connection on allows one to define the notion of a straight line through the point .A source for this section is , which uses the term "linear connection" where we use "affine connection" instead. Let be a tangent vector to the manifold at . Then there is a unique geodesic :[0,1] → satisfying with initial tangent vector . The corresponding exponential map is defined by . In general, the exponential map is only ''locally defined'', that is, it only takes a small neighborhood of the origin at , to a neighborhood of in the manifold. This is b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Azimuthal Equidistant N90
An azimuth (; from ) is the horizontal angle from a cardinal direction, most commonly north, in a local or observer-centric spherical coordinate system. Mathematically, the relative position vector from an observer (origin) to a point of interest is projected perpendicularly onto a reference plane (the horizontal plane); the angle between the projected vector and a reference vector on the reference plane is called the azimuth. When used as a celestial coordinate, the azimuth is the horizontal direction of a star or other astronomical object in the sky. The star is the point of interest, the reference plane is the local area (e.g. a circular area with a 5 km radius at sea level) around an observer on Earth's surface, and the reference vector points to true north. The azimuth is the angle between the north vector and the star's vector on the horizontal plane. Azimuth is usually measured in degrees (°), in the positive range 0° to 360° or in the signed range -180° to + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Identity Function
Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unchanged. That is, when is the identity function, the equality is true for all values of to which can be applied. Definition Formally, if is a set, the identity function on is defined to be a function with as its domain and codomain, satisfying In other words, the function value in the codomain is always the same as the input element in the domain . The identity function on is clearly an injective function as well as a surjective function (its codomain is also its range), so it is bijective. The identity function on is often denoted by . In set theory, where a function is defined as a particular kind of binary relation, the identity function is given by the identity relation, or ''diagonal'' of . Algebraic propert ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Exponential Topics
{{Short description, none This is a list of exponential topics, by Wikipedia page. See also list of logarithm topics. * Accelerating change * Mental calculation, Approximating natural exponents (log base e) * Artin–Hasse exponential Talk:Artin–Hasse exponential, * Bacterial growth Talk:Bacterial growth, * Baker–Campbell–Hausdorff formula * Cell growth Talk:Cell growth, * Barometric formula Talk:Barometric formula, * Beer–Lambert law Talk:Beer–Lambert law, * Characterizations of the exponential function Talk:Characterizations of the exponential function, * Catenary Talk:Catenary, * Compound interest Talk:Compound interest, * De Moivre's formula Talk:de Moivre's formula, * Derivative of the exponential map Talk:Derivative of the exponential map, * Doléans-Dade exponential Talk:Doléans-Dade exponential, * Doubling time Talk:Doubling time, * e-folding, ''e''-folding Talk:e-folding, * Elimination half-life Talk:Elimination half-life, * Error expone ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive Real Numbers
In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those real numbers that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used for either of these, the notation \R_ or \R^ for \left\ and \R_^ or \R^_ for \left\ has also been widely employed, is aligned with the practice in algebra of denoting the exclusion of the zero element with a star, and should be understandable to most practicing mathematicians. In a complex plane, \R_ is identified with the positive real axis, and is usually drawn as a horizontal ray. This ray is used as reference in the polar form of a complex number. The real positive axis corresponds to complex numbers z = , z, \mathrm^, with argument \varphi = 0. Properties The set \R_ is closed under addition, multiplication, and division. It inherits a topology from the real line and, thus, has the structure of a multiplicative topological group or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponential Map (Lie Theory)
In the theory of Lie groups, the exponential map is a map from the Lie algebra \mathfrak g of a Lie group G to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups. The ordinary exponential function of mathematical analysis is a special case of the exponential map when G is the multiplicative group of positive real numbers (whose Lie algebra is the additive group of all real numbers). The exponential map of a Lie group satisfies many properties analogous to those of the ordinary exponential function, however, it also differs in many important respects. Definitions Let G be a Lie group and \mathfrak g be its Lie algebra (thought of as the tangent space to the identity element of G). The exponential map is a map :\exp\colon \mathfrak g \to G which can be defined in several different ways. The typical modern definition ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Curvature
In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For example, a sphere of radius has Gaussian curvature everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus. Gaussian curvature is an ''intrinsic'' measure of curvature, meaning that it could in principle be measured by a 2-dimensional being living entirely within the surface, because it depends only on distances that are measured “within” or along the surface, not on the way it is isometrically embedding, embedded in Euclidean space. This is the content of the ''Theorema Egregium''. Gaussian curvature is named after Carl Friedrich Gauss, who published the ''Theorema Egregium'' in 1827. Informal definit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sectional Curvature
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a point ''p'' of the manifold. It can be defined geometrically as the Gaussian curvature of the surface (topology), surface which has the plane σ''p'' as a tangent plane at ''p'', obtained from geodesics which start at ''p'' in the directions of σ''p'' (in other words, the image of σ''p'' under the exponential map (Riemannian geometry), exponential map at ''p''). The sectional curvature is a real-valued function on the 2-Grassmannian fiber bundle, bundle over the manifold. The sectional curvature determines the Riemann curvature tensor, Riemann curvature tensor completely. Definition Given a Riemannian manifold and two linearly independent tangent vectors at the same point, ''u'' and ''v'', we can define :K(u,v)= Here ''R' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curvature Of Riemannian Manifolds
In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the ''Riemann curvature tensor''. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications. Ways to express the curvature of a Riemannian manifold Riemann curvature tensor The curvature of a Riemannian manifold can be described in various ways; the most standard one is the curvature tensor, given in terms of a Levi-Civita connection (or covariant differentiation) and Lie bracket by the following formula: R(u,v)w=\nabla_u\nabla_v w - \nabla_v \nabla_u w -\nabla_ w . Here is a linear transformation of the tange ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geodesic Normal Coordinates
In differential geometry, normal coordinates at a point ''p'' in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of ''p'' obtained by applying the exponential map to the tangent space at ''p''. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point ''p'', thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point ''p'', and that the first partial derivatives of the metric at ''p'' vanish. A basic result of differential geometry states that normal coordinates at a point always exist on a manifold with a symmetric affine connection. In such coordinates the covariant derivative reduces to a partial derivative (at ''p'' only), and the geodesics through ''p'' are locally linear functions of ''t'' (the affine parameter) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double Tangent Bundle
In mathematics, particularly differential topology, the double tangent bundle or the second tangent bundle refers to the tangent bundle of the total space ''TM'' of the tangent bundle of a smooth manifold ''M'' . A note on notation: in this article, we denote projection maps by their domains, e.g., ''π''''TTM'' : ''TTM'' → ''TM''. Some authors index these maps by their ranges instead, so for them, that map would be written ''π''''TM''. The second tangent bundle arises in the study of connections and second order ordinary differential equations, i.e., (semi)spray structures on smooth manifolds, and it is not to be confused with the second order jet bundle. Secondary vector bundle structure and canonical flip Since is a vector bundle in its own right, its tangent bundle has the secondary vector bundle structure where is the push-forward of the canonical projection In the following we denote : \xi = \xi^k\frac\Big, _x\in T_xM, \qquad X = X^k\frac\Big, _x\in T_xM ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss's Lemma (other)
Gauss's lemma can mean any of several mathematical lemmas named after Carl Friedrich Gauss: * Gauss's lemma (polynomials), the greatest common divisor of the coefficients is a multiplicative function * Gauss's lemma (number theory), condition under which an integer is a quadratic residue * Gauss's lemma (Riemannian geometry), theorem in manifold theory * A generalization of Euclid's lemma In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers: For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In ... is sometimes called Gauss's lemma See also * List of topics named after Carl Friedrich Gauss {{Mathematical disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss's Lemma (Riemannian Geometry)
In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let ''M'' be a Riemannian manifold, equipped with its Levi-Civita connection, and ''p'' a point of ''M''. The exponential map is a mapping from the tangent space at ''p'' to ''M'': :\mathrm : T_pM \to M which is a diffeomorphism in a neighborhood of zero. Gauss' lemma asserts that the image of a sphere of sufficiently small radius in ''T''p''M'' under the exponential map is perpendicular to all geodesics originating at ''p''. The lemma allows the exponential map to be understood as a radial isometry, and is of fundamental importance in the study of geodesic convexity and normal coordinates. Introduction We define the exponential map at p\in M by : \exp_p: T_pM\supset B_(0) \longrightarrow M,\quad vt \longmapsto \gamma_(t), where \gamma_ is the unique geodesic with \gamma_(0)=p and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |