Equalizer (mathematics)
In mathematics, an equaliser is a set of arguments where two or more functions have equal values. An equaliser is the solution set of an equation. In certain contexts, a difference kernel is the equaliser of exactly two functions. Definitions Let ''X'' and ''Y'' be sets. Let ''f'' and ''g'' be functions, both from ''X'' to ''Y''. Then the ''equaliser'' of ''f'' and ''g'' is the set of elements ''x'' of ''X'' such that ''f''(''x'') equals ''g''(''x'') in ''Y''. Symbolically: : \operatorname(f, g) := \. The equaliser may be denoted Eq(''f'', ''g'') or a variation on that theme (such as with lowercase letters "eq"). In informal contexts, the notation is common. The definition above used two functions ''f'' and ''g'', but there is no need to restrict to only two functions, or even to only finitely many functions. In general, if F is a set of functions from ''X'' to ''Y'', then the ''equaliser'' of the members of F is the set of elements ''x'' of ''X'' such that, given any ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Property
In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property. Technically, a universal property is defined in terms of categories and functors by mean of a universal morphism (see , below). Universal morphisms can also be thought more abstractly as initial or terminal objects of a comma cate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Codomain
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either the codomain or image of a function. A codomain is part of a function if is defined as a triple where is called the '' domain'' of , its ''codomain'', and its '' graph''. The set of all elements of the form , where ranges over the elements of the domain , is called the '' image'' of . The image of a function is a subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ... of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements in its codomain for which the equation does not have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product (category Theory)
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects. Definition Product of two objects Fix a category C. Let X_1 and X_2 be objects of C. A product of X_1 and X_2 is an object X, typically denoted X_1 \times X_2, equipped with a pair of morphisms \pi_1 : X \to X_1, \pi_2 : X \to X_2 satisfying the following universal property: * For every object Y and every pair of morphisms f_1 : Y \to X_1, f_2 : Y \to X_2, there exists a unique morphism f : Y \to X_1 \times X_2 such that the following diagram commutes: *: Whether a product exists may depend on C or on X_1 and X_2. If it does exist, it is unique up to canonical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a unive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inclusion Function
In mathematics, if A is a subset of B, then the inclusion map (also inclusion function, insertion, or canonical injection) is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: \iota: A\hookrightarrow B. (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections. Given any morphism f between objects X and Y, if there is an inclusion map into the domain \iota : A \to X, then one can form the restriction f \, \iota of f. In many instances, one can also construct a canonical inclusion into the codomain R \to Y known as the range of f. Applications of inclusion maps Inclusion maps tend to be homomorphisms of algebraic structures; thus, such inclusion maps are embeddings. More precisely, gi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular Group (mathematics), groups as the object of study, in universal algebra one takes the class of groups as an object of study. Basic idea In universal algebra, an algebra (or algebraic Structure (mathematical logic), structure) is a set (mathematics), set ''A'' together with a collection of operations on ''A''. An ''n''-arity, ary operation (mathematics), operation on ''A'' is a function (mathematics), function that takes ''n'' elements of ''A'' and returns a single element of ''A''. Thus, a 0-ary operation (or ''nullary operation'') can be represented simply as an element of ''A'', or a ''Constant (mathematics), constant'', often denoted by a letter like ''a''. A 1-ary operation (or ''unary operation'') is simply a function from ''A'' to ''A'', often denoted by a s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prentice Hall International Series In Computer Science
Prentice Hall International Series in Computer Science was a series of books on computer science published by Prentice Hall. The series' founding editor was Tony Hoare. Richard Bird subsequently took over editing the series. Many of the books in the series have been in the area of formal methods in particular. Selected books The following books were published in the series: * R. S. Bird, ''Introduction to Functional Programming using Haskell'', 2nd edition, 1998. . * R. S. Bird and O. de Moor, ''Algebra of Programming'', 1996. . (100th volume in the series.) * O.-J. Dahl, ''Verifiable Programming'', 1992. . * D. M. Gabbay, ''Elementary Logics: A Procedural Perspective'', 1998. . * I. J. Hayes (ed.), ''Specification Cases Studies'', 2nd edition, 1993. . * M. G. Hinchey and J. P. Bowen (eds.), ''Applications of Formal Methods'', 1996. . * C. A. R. Hoare, ''Communicating Sequential Processes'', 1985. hardback or paperback. * C. A. R. Hoare and M. J. C. Gordon, ''Mechanized Re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unique (mathematics)
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" or "∃=1". For example, the formal statement : \exists! n \in \mathbb\,(n - 2 = 4) may be read as "there is exactly one natural number n such that n - 2 =4". Proving uniqueness The most common technique to prove the unique existence of a certain object is to first prove the existence of the entity with the desired condition, and then to prove that any two such entities (say, ''a'' and ''b'') must be equal to each other (i.e. a = b). For example, to show that the equation x + 2 = 5 has exactly one solution, one would first start by establishing that at least one solution exists, namely 3; the proof of this part is simply the verification that the equation below holds: : 3 + 2 = 5. To ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limit (category Theory)
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits. Limits and colimits, like the strongly related notions of universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category C are defined by means of diagrams in C. Formally, a diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is thought of as indexing a collection of objects and morphisms in C patterned on J. One is most often interested in the case where the category J is a small or even finite c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |