Double Lattice
   HOME
*



picture info

Double Lattice
In mathematics, especially in geometry, a double lattice in is a discrete subgroup of the group of Euclidean motions that consists only of translations and point reflections and such that the subgroup of translations is a lattice. The orbit of any point under the action of a double lattice is a union of two Bravais lattices, related to each other by a point reflection. A double lattice in two dimensions is a p2 wallpaper group. In three dimensions, a double lattice is a space group of the type , as denoted by international notation. Double lattice packing A packing that can be described as the orbit of a body under the action of a double lattice is called a double lattice packing. In many cases the highest known packing density for a body is achieved by a double lattice. Examples include the regular pentagon, heptagon, and nonagon and the equilateral triangular bipyramid. Włodzimierz Kuperberg and Greg Kuperberg showed that all convex planar bodies can pack at a density ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas Callister Hales
Thomas Callister Hales (born June 4, 1958) is an American mathematician working in the areas of representation theory, discrete geometry, and formal verification. In representation theory he is known for his work on the Langlands program and the proof of the fundamental lemma over the group Sp(4) (many of his ideas were incorporated into the final proof of the fundamental lemma, due to Ngô Bảo Châu). In discrete geometry, he settled the Kepler conjecture on the density of sphere packings and the honeycomb conjecture. In 2014, he announced the completion of the Flyspeck Project, which formally verified the correctness of his proof of the Kepler conjecture. Biography He received his Ph.D. from Princeton University in 1986, his dissertation was titled ''The Subregular Germ of Orbital Integrals''. Hales taught at Harvard University and the University of Chicago, and from 1993 and 2002 he worked at the University of Michigan. In 1998, Hales submitted his paper on the computer-ai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete & Computational Geometry
'' Discrete & Computational Geometry'' is a peer-reviewed mathematics journal published quarterly by Springer. Founded in 1986 by Jacob E. Goodman and Richard M. Pollack, the journal publishes articles on discrete geometry and computational geometry. Abstracting and indexing The journal is indexed in: * ''Mathematical Reviews'' * ''Zentralblatt MATH'' * ''Science Citation Index'' * ''Current Contents''/Engineering, Computing and Technology Notable articles The articles by Gil Kalai with a proof of a subexponential upper bound on the diameter of a polyhedron and by Samuel Ferguson on the Kepler conjecture, both published in Discrete & Computational geometry, earned their author the Fulkerson Prize The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at e .... References External link ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greg Kuperberg
Greg Kuperberg (born July 4, 1967) is a Polish-born American mathematician known for his contributions to geometric topology, quantum algebra, and combinatorics. Kuperberg is a professor of mathematics at the University of California, Davis.Greg Kuperberg, Greg Kuperberg', retrieved March 8, 2008. Biography Kuperberg is the son of two mathematicians, Krystyna Kuperberg and Włodzimierz Kuperberg. He was born in Poland in 1967, but his family emigrated to Sweden in 1969 due to the 1968 Polish political crisis. In 1972, Kuperberg's family moved to the United States, eventually settling in Auburn, Alabama. Kuperberg wrote three computer games for the IBM Personal Computer in 1982 and 1983 (which were published by Orion Software): ''Paratrooper'', ''PC-Man'' and ''J-Bird''. (video game clones of ''Sabotage'', ''Pac-Man'' and ''Q*bert'', respectively) He enrolled at Harvard University in 1983 and received a bachelor's degree in 1987. He was ranked Top 10 in the 1986 William Low ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Włodzimierz Kuperberg
Włodzimierz Kuperberg (born January 19, 1941) is a professor of mathematics at Auburn University, with research interests in geometry and topology. Biography Although Kuperberg is Poles, Polish-United States, American, he was born in what is now Belarus, where his parents and older siblings had traveled east to escape World War II. In 1946, the family returned to Poland, resettling in Szczecin, where Kuperberg grew up. He began his studies at the University of Warsaw in 1959, and received his Ph.D. from the same institution in 1969, under the supervision of Karol Borsuk. During his time at Warsaw, he published three high school textbooks in Polish. Kuperberg left Poland due to the anti-semitic aspects of the 1967-1968 Polish political crisis, and worked at Stockholm University until 1972, when he assumed a visiting position at the University of Houston. In 1974, Kuperberg took a position at Auburn where he remains. Kuperberg married mathematician Krystyna Kuperberg in 1964, and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Bipyramid
In geometry, the triangular bipyramid (or dipyramid) is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces. As the name suggests, it can be constructed by joining two tetrahedra along one face. Although all its faces are congruent and the solid is face-transitive, it is not a Platonic solid because some vertices adjoin three faces and others adjoin four. The bipyramid whose six faces are all equilateral triangles is one of the Johnson solids, (). As a Johnson solid with all faces equilateral triangles, it is also a deltahedron. Formulae The following formulae for the height (H), surface area (A) and volume (V) can be used if all faces are regular, with edge length L: :H = L\cdot \frac \approx L\cdot 1.632993162 :A = L^2 \cdot \frac \approx L^2\cdot 2.598076211 :V = L^3 \cdot \frac \approx L^3\cdot 0.235702260 Dual polyhedron The dual polyhedron of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonagon
In geometry, a nonagon () or enneagon () is a nine-sided polygon or 9-gon. The name ''nonagon'' is a prefix hybrid formation, from Latin (''nonus'', "ninth" + ''gonon''), used equivalently, attested already in the 16th century in French ''nonogone'' and in English from the 17th century. The name ''enneagon'' comes from Greek ''enneagonon'' (εννεα, "nine" + γωνον (from γωνία = "corner")), and is arguably more correct, though less common than "nonagon". Regular nonagon A '' regular nonagon'' is represented by Schläfli symbol and has internal angles of 140°. The area of a regular nonagon of side length ''a'' is given by :A = \fraca^2\cot\frac=(9/2)ar = 9r^2\tan(\pi/9) :::= (9/2)R^2\sin(2\pi/9)\simeq6.18182\,a^2, where the radius ''r'' of the inscribed circle of the regular nonagon is :r=(a/2)\cot(\pi/9) and where ''R'' is the radius of its circumscribed circle: :R = \sqrt=r\sec(\pi/9). Construction Although a regular nonagon is not constructible with com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heptagon
In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon. The heptagon is sometimes referred to as the septagon, using "sept-" (an elision of ''septua-'', a Latin-derived numerical prefix, rather than ''hepta-'', a Greek-derived numerical prefix; both are cognate) together with the Greek suffix "-agon" meaning angle. Regular heptagon A regular heptagon, in which all sides and all angles are equal, has internal angles of 5π/7 radians (128 degrees). Its Schläfli symbol is . Area The area (''A'') of a regular heptagon of side length ''a'' is given by: :A = \fraca^2 \cot \frac \simeq 3.634 a^2. This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with vertices at the center and at the heptagon's vertices, and then halving each triangle using the apothem as the common side. The apothem is half the cotangent of \pi/7, and the area of each of the 14 small triangles is one-fourth of the apothem. The area of a regular heptago ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting ''regular pentagon'' (or ''star pentagon'') is called a pentagram. Regular pentagons A '' regular pentagon'' has Schläfli symbol and interior angles of 108°. A '' regular pentagon'' has five lines of reflectional symmetry, and rotational symmetry of order 5 (through 72°, 144°, 216° and 288°). The diagonals of a convex regular pentagon are in the golden ratio to its sides. Given its side length t, its height H (distance from one side to the opposite vertex), width W (distance between two farthest separated points, which equals the diagonal length D) and circumradius R are given by: :\begin H &= \frac~t \approx 1.539~t, \\ W= D &= \frac~t\approx 1.618~t, \\ W &= \sqr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Packing Density
A packing density or packing fraction of a packing in some space is the fraction of the space filled by the figures making up the packing. In simplest terms, this is the ratio of the volume of bodies in a space to the volume of the space itself. In packing problems, the objective is usually to obtain a packing of the greatest possible density. In compact spaces If are measurable subsets of a compact measure space and their interiors pairwise do not intersect, then the collection is a packing in and its packing density is :\eta = \frac. In Euclidean space If the space being packed is infinite in measure, such as Euclidean space, it is customary to define the density as the limit of densities exhibited in balls of larger and larger radii. If is the ball of radius centered at the origin, then the density of a packing is :\eta = \lim_\frac. Since this limit does not always exist, it is also useful to define the upper and lower densities as the limit superior and limit i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hermann–Mauguin Notation
In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann (who introduced it in 1928) and the French mineralogist Charles-Victor Mauguin (who modified it in 1931). This notation is sometimes called international notation, because it was adopted as standard by the ''International Tables For Crystallography'' since their first edition in 1935. The Hermann–Mauguin notation, compared with the Schoenflies notation, is preferred in crystallography because it can easily be used to include translational symmetry elements, and it specifies the directions of the symmetry axes. Point groups Rotation axes are denoted by a number ''n'' — 1, 2, 3, 4, 5, 6, 7, 8 ... (angle of rotation ''φ'' = ). For improper rotations, Hermann–Mauguin symbols show rotoinversion axes, unlike Schoenflies and Shubnikov notations, that shows rotation-reflection axes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]