Divided Powers
   HOME
*





Divided Powers
In mathematics, specifically commutative algebra, a divided power structure is a way of making expressions of the form x^n / n! meaningful even when it is not possible to actually divide by n!. Definition Let ''A'' be a commutative ring with an ideal ''I''. A divided power structure (or PD-structure, after the French ''puissances divisées'') on ''I'' is a collection of maps \gamma_n : I \to A for ''n'' = 0, 1, 2, ... such that: #\gamma_0(x) = 1 and \gamma_1(x) = x for x \in I, while \gamma_n(x) \in I for ''n'' > 0. #\gamma_n(x + y) = \sum_^n \gamma_(x) \gamma_i(y) for x, y \in I. #\gamma_n(\lambda x) = \lambda^n \gamma_n(x) for \lambda \in A, x \in I. #\gamma_m(x) \gamma_n(x) = ((m, n)) \gamma_(x) for x \in I, where ((m, n)) = \frac is an integer. #\gamma_n(\gamma_m(x)) = C_ \gamma_(x) for x \in I and m > 0, where C_ = \frac is an integer. For convenience of notation, \gamma_n(x) is often written as x^ when it is clear what divided power structure is meant. The term ''divide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Algebra
In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universal property: for every linear map from to a commutative algebra , there is a unique algebra homomorphism such that , where is the inclusion map of in . If is a basis of , the symmetric algebra can be identified, through a canonical isomorphism, to the polynomial ring , where the elements of are considered as indeterminates. Therefore, the symmetric algebra over can be viewed as a "coordinate free" polynomial ring over . The symmetric algebra can be built as the quotient of the tensor algebra by the two-sided ideal generated by the elements of the form . All these definitions and properties extend naturally to the case where is a module (not necessarily a free one) over a commutative ring. Construction From tensor algebra It is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots in a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d\left(x_m, x_n\right) < r. Complete space A metric space (X, d) is complete if any of the following equivalent conditions are satisfied: :#Every



Universal Construction
Universal is the adjective for universe. Universal may also refer to: Companies * NBCUniversal, a media and entertainment company ** Universal Animation Studios, an American Animation studio, and a subsidiary of NBCUniversal ** Universal TV, a television channel owned by NBCUniversal ** Universal Kids, an American current television channel, formerly known as Sprout, owned by NBCUniversal ** Universal Pictures, an American film studio, and a subsidiary of NBCUniversal ** Universal Television, a television division owned by NBCUniversal Content Studios ** Universal Parks & Resorts, the theme park unit of NBCUniversal * Universal Airlines (other) * Universal Avionics, a manufacturer of flight control components * Universal Corporation, an American tobacco company * Universal Display Corporation, a manufacturer of displays * Universal Edition, a classical music publishing firm, founded in Vienna in 1901 * Universal Entertainment Corporation, a Japanese software producer and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Module
In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set and ring , there is a free -module with basis , which is called the ''free module on'' or ''module of formal'' -''linear combinations'' of the elements of . A free abelian group is precisely a free module over the ring of integers. Definition For a ring R and an R-module M, the set E\subseteq M is a basis for M if: * E is a generating set for M; that is to say, every element of M is a finite sum of elements of E multiplied by coefficients in R; and * E is linearly independent, that is, for every subset \ of distinct elements of E, r_1 e_1 + r_2 e_2 + \cdots + r_n e_n = 0_M implies that r_1 = r_2 = \cdots = r_n = 0_R (where 0_M is the zero element of M and 0_R is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PD Differential Operators
PD, P.D., or Pd may refer to: Arts and media * ''People's Democracy'' (newspaper), weekly organ of the Communist Party of India (Marxist) * ''The Plain Dealer'', a Cleveland, Ohio, US newspaper * Post Diaspora, a time frame in the ''Honorverse'' series of science fiction novels * ''Principia Discordia'', a 1965 holy text in Discordianism * Production designer, a profession in film or television * Production diary, a promotional video podcast * Public domain, a copyright status Economics and business * Personnel department, of an organization * Price discrimination, a microeconomic pricing strategy * Probability of default, used in finance (Basel II) * Professional degree, or first professional degree * Professional development, learning to earn or maintain professional credentials * Program director, in service industries * Public Debt, of a government Organizations Companies * Phelps Dodge, a former American mining company, now part of Freeport-McMoRan * Polyphony Digital, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crystalline Cohomology
In mathematics, crystalline cohomology is a Weil cohomology theory for schemes ''X'' over a base field ''k''. Its values ''H''''n''(''X''/''W'') are modules over the ring ''W'' of Witt vectors over ''k''. It was introduced by and developed by . Crystalline cohomology is partly inspired by the ''p''-adic proof in of part of the Weil conjectures and is closely related to the algebraic version of de Rham cohomology that was introduced by Grothendieck (1963). Roughly speaking, crystalline cohomology of a variety ''X'' in characteristic ''p'' is the de Rham cohomology of a smooth lift of ''X'' to characteristic 0, while de Rham cohomology of ''X'' is the crystalline cohomology reduced mod ''p'' (after taking into account higher ''Tor''s). The idea of crystalline cohomology, roughly, is to replace the Zariski open sets of a scheme by infinitesimal thickenings of Zariski open sets with divided power structures. The motivation for this is that it can then be calculated by taking a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Crystalline Cohomology
In mathematics, crystalline cohomology is a Weil cohomology theory for schemes ''X'' over a base field ''k''. Its values ''H''''n''(''X''/''W'') are modules over the ring ''W'' of Witt vectors over ''k''. It was introduced by and developed by . Crystalline cohomology is partly inspired by the ''p''-adic proof in of part of the Weil conjectures and is closely related to the algebraic version of de Rham cohomology that was introduced by Grothendieck (1963). Roughly speaking, crystalline cohomology of a variety ''X'' in characteristic ''p'' is the de Rham cohomology of a smooth lift of ''X'' to characteristic 0, while de Rham cohomology of ''X'' is the crystalline cohomology reduced mod ''p'' (after taking into account higher ''Tor''s). The idea of crystalline cohomology, roughly, is to replace the Zariski open sets of a scheme by infinitesimal thickenings of Zariski open sets with divided power structures. The motivation for this is that it can then be calculated by taking a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]