Direct Image With Compact Support
   HOME
*





Direct Image With Compact Support
In mathematics, the direct image with compact (or proper) support is an image functor for sheaves that extends the compactly supported global sections functor to the relative setting. It is one of Grothendieck's six operations. Definition Let ''f'': ''X'' → ''Y'' be a continuous mapping of locally compact Hausdorff topological spaces, and let Sh(–) denote the category of sheaves of abelian groups on a topological space. The direct image with compact (or proper) support is the functor :''f''!: Sh(''X'') → Sh(''Y'') that sends a sheaf ''F'' on ''X'' to the sheaf ''f''!(''F'') given by the formula :''f''!(''F'')(''U'') := for every open subset ''U'' of ''Y.'' Here, the notion of a proper map of spaces is unambiguous since the spaces in question are locally compact Hausdorff. This defines ''f''!(''F'') as a subsheaf of the direct image sheaf ''f''∗(''F''), and the functoriality of this construction then follows from basic properties of the support and the definition of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. '' Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structure-preserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wolfgang Soergel
Wolfgang Soergel (born 12 June 1962 in Geneva) is a German mathematician, specializing in geometry and representation theory. Biography He spent his youth in Heidelberg, where he passed the ''Abitur'' examination in 1980 at the . He studied mathematics and physics in Geneva and Bonn and received his ''Promotion'' (PhD) in 1988 from the University of Hamburg. His PhD dissertation ''Universelle versus relative Einhüllende: Eine geometrische Untersuchung von Quotienten von universellen Einhüllenden halbeinfacher Lie-Algebren'' (Universal versus relative envelopes: a geometric investigation of quotients of universal envelopes of semi-simple Lie algebras) was supervised by Jens Carsten Jantzen. After postdoctoral positions at U. C. Berkeley, Harvard University, and MIT, Soergel completed his ''Habilitation'' at the University of Bonn in 1991. In 1994 he was appointed to a professorial chair at the University of Freiburg. He was an invited speaker at the 1994 International Congress of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Image Functor
In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf ''F'' defined on a topological space ''X'' and a continuous map ''f'': ''X'' → ''Y'', we can define a new sheaf ''f''∗''F'' on ''Y'', called the direct image sheaf or the pushforward sheaf of ''F'' along ''f'', such that the global sections of ''f''∗''F'' is given by the global sections of ''F''. This assignment gives rise to a functor ''f''∗ from the category of sheaves on ''X'' to the category of sheaves on ''Y'', which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme. Definition Let ''f'': ''X'' → ''Y'' be a continuous map of topological spaces, and let Sh(–) denote the category of sheaves of abelian groups on a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proper Map
In mathematics, a function between topological spaces is called proper if inverse images of compact subsets are compact. In algebraic geometry, the analogous concept is called a proper morphism. Definition There are several competing definitions of a "proper function". Some authors call a function f : X \to Y between two topological spaces if the preimage of every compact set in Y is compact in X. Other authors call a map f if it is continuous and ; that is if it is a continuous closed map and the preimage of every point in Y is compact. The two definitions are equivalent if Y is locally compact and Hausdorff. Let f : X \to Y be a closed map, such that f^(y) is compact (in X) for all y \in Y. Let K be a compact subset of Y. It remains to show that f^(K) is compact. Let \left\ be an open cover of f^(K). Then for all k \in K this is also an open cover of f^(k). Since the latter is assumed to be compact, it has a finite subcover. In other words, for every k \in K, there exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Support (mathematics)
In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Image Functors For Sheaves
In mathematics, especially in sheaf theory—a domain applied in areas such as topology, logic and algebraic geometry—there are four image functors for sheaves that belong together in various senses. Given a continuous mapping ''f'': ''X'' → ''Y'' of topological spaces, and the category Sh(–) of sheaves of abelian groups on a topological space. The functors in question are * direct image ''f''∗ : Sh(''X'') → Sh(''Y'') * inverse image ''f''∗ : Sh(''Y'') → Sh(''X'') * direct image with compact support ''f''! : Sh(''X'') → Sh(''Y'') * exceptional inverse image ''Rf''! : ''D''(Sh(''Y'')) → ''D''(Sh(''X'')). The exclamation mark is often pronounced " shriek" (slang for exclamation mark), and the maps called "''f'' shriek" or "''f'' lower shriek" and "''f'' upper shriek"—see also shriek map. The exceptional inverse image is in general defined on the level of derived categories only. Similar considerations apply to étale sheaves on schemes. Adjointness The fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]