Dialetheic Logic
   HOME





Dialetheic Logic
Dialetheism (; from Greek 'twice' and 'truth') is the view that there are statements that are both true and false. More precisely, it is the belief that there can be a true statement whose negation is also true. Such statements are called "true contradictions", ''dialetheia'', or nondualisms. Dialetheism is not a system of formal logic; instead, it is a thesis about truth that influences the construction of a formal logic, often based on pre-existing systems. Introducing dialetheism has various consequences, depending on the theory into which it is introduced. A common mistake resulting from this is to reject dialetheism on the basis that, in traditional systems of logic (e.g., classical logic and intuitionistic logic), every statement becomes a theorem if a contradiction is true, trivialising such systems when dialetheism is included as an axiom.Ben Burgis, Visiting Professor of Philosophy at the University of Ulsan in South Korea, iBlog&~Blog Other logical systems, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ancient Greek
Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek Dark Ages, Dark Ages (), the Archaic Greece, Archaic or Homeric Greek, Homeric period (), and the Classical Greece, Classical period (). Ancient Greek was the language of Homer and of fifth-century Athens, fifth-century Athenian historians, playwrights, and Ancient Greek philosophy, philosophers. It has contributed many words to English vocabulary and has been a standard subject of study in educational institutions of the Western world since the Renaissance. This article primarily contains information about the Homeric Greek, Epic and Classical periods of the language, which are the best-attested periods and considered most typical of Ancient Greek. From the Hellenistic period (), Ancient Greek was followed by Koine Greek, which is regar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deflationism
In philosophy and logic, a deflationary theory of truth (also semantic deflationism or simply deflationism) is one of a family of theories that all have in common the claim that assertions of predicate truth of a statement do not attribute a property called "truth" to such a statement. Redundancy theory Gottlob Frege was probably the first philosopher or logician to note that predicating truth or existence does not express anything above and beyond the statement to which it is attributed. He remarked: It is worthy of notice that the sentence "I smell the scent of violets" has the same content as the sentence "it is true that I smell the scent of violets". So it seems, then, that nothing is added to the thought by my ascribing to it the property of truth. (Frege, G., 1918. "Thought", in his ''Logical Investigations'', Oxford: Blackwell, 1977)
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Łukasiewicz Logic
In mathematics and philosophy, Łukasiewicz logic ( , ) is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic;Łukasiewicz J., 1920, O logice trójwartościowej (in Polish). Ruch filozoficzny 5:170–171. English translation: On three-valued logic, in L. Borkowski (ed.), ''Selected works by Jan Łukasiewicz'', North–Holland, Amsterdam, 1970, pp. 87–88. it was later generalized to ''n''-valued (for all finite ''n'') as well as infinitely-many-valued ( ℵ0-valued) variants, both propositional and first order.Hay, L.S., 1963Axiomatization of the infinite-valued predicate calculus ''Journal of Symbolic Logic'' 28:77–86. The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the ŁukasiewiczTarski logic. citing Łukasiewicz, J., Tarski, A.Untersuchungen über den Aussagenkalkül Comp. Rend. Soc. Sci. et Lettres Varsovie Cl. III ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fuzzy Logic
Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely false. By contrast, in Boolean algebra, Boolean logic, the truth values of variables may only be the integer values 0 or 1. The term ''fuzzy logic'' was introduced with the 1965 proposal of fuzzy set theory by mathematician Lotfi A. Zadeh, Lotfi Zadeh. Fuzzy logic had, however, been studied since the 1920s, as Łukasiewicz logic, infinite-valued logic—notably by Jan Łukasiewicz, Łukasiewicz and Alfred Tarski, Tarski. Fuzzy logic is based on the observation that people make decisions based on imprecise and non-numerical information. Fuzzy models or fuzzy sets are mathematical means of representing vagueness and imprecise information (hence the term fuzzy). These models have the capability of recognising, representing, manipulating, in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Many-valued Logic
Many-valued logic (also multi- or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's Term logic, logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to ''n''-valued logic for ''n'' greater than 2. Those most popular in the literature are Three-valued logic, three-valued (e.g., Jan Łukasiewicz, Łukasiewicz's and Stephen Cole Kleene, Kleene's, which accept the values "true", "false", and "unknown"), four-valued logic, four-valued, nine-valued logic, nine-valued, the finite-valued logic, finite-valued (finitely-many valued) with more than three values, and the infinite-valued logic, infinite-valued (infinitely-many-valued), such as fuzzy logic and probabilistic logic, probability logic. History It is ''wrong'' that the first known classical logician who did not fully accept the law of excluded middle was Aristotle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Value
In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Truth values are used in computing as well as various types of logic. Computing In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null are treated as false, and strings with content (like "abc"), other numbers, and objects evaluate to true. Sometimes these classes of expressions are called falsy and truthy. For example, in Lisp, nil, the empty list, is treated as false, and all other values are treated as true. In C, the number 0 or 0.0 is false, and all other values are treated as true. In JavaScript, the empty string (""), null, undefined, NaN, +0, −0 and false are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites". In logic, many paradoxes exist that are known to be invalid arguments, yet are nevertheless valuable in promoting critical thinking, while other paradoxes have revealed errors in definitions that were assumed to be rigorous, and have caused axioms of mathematics and logic to be re-examined. One example is Russell's paradox, which questions whether a "list of all lists that do not contain themselves" would include itself and showed that attempts to found set theory on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Review Of Symbolic Logic
The Association for Symbolic Logic (ASL) is an international organization of specialists in mathematical logic and philosophical logic. The ASL was founded in 1936, and its first president was Curt John Ducasse. The current president of the ASL is Phokion Kolaitis. Publications The ASL publishes books and academic journals. Its three official journals are: * ''Journal of Symbolic Logic'' – publishes research in all areas of mathematical logic. Founded in 1936, . * ''Bulletin of Symbolic Logic'' – publishes primarily expository articles and reviews. Founded in 1995, . * ''Review of Symbolic Logic'' – publishes research relating to logic, philosophy, science, and their interactions. Founded in 2008, . In addition, the ASL has a sponsored journal: * ''Journal of Logic and Analysis'' publishes research on the interactions between mathematical logic and pure and applied analysis. Founded in 2009 as an open-access successor to the Springer journal ''Logic and Analysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Schema Of Specification
In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation (''Aussonderungsaxiom''), subset axiom, axiom of class construction, or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Some mathematicians call it the axiom schema of comprehension, although others use that term for ''unrestricted'' comprehension, discussed below. Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory. Statement One instance of the schema is included for each formula \varphi in the language of set theory with free variables among ''x'', ''w''1, ..., ''w''''n'', ''A''. So ''B'' does not occur free in \varphi. In the formal language of set theory, the axiom schema is: :\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Naïve Set Theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It describes the aspects of mathematical sets familiar in discrete mathematics (for example Venn diagrams and symbolic reasoning about their Boolean algebra), and suffices for the everyday use of set theory concepts in contemporary mathematics. Sets are of great importance in mathematics; in modern formal treatments, most mathematical objects (numbers, relations, functions, etc.) are defined in terms of sets. Naive set theory suffices for many purposes, while also serving as a stepping stone towards more formal treatments. Method A ''naive theory'' in the sense of "naive set theory" is a non-formalized theory, that is, a theory that uses natural language to describe sets and operations on sets. Such theory treats sets as platonic absolute ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]