Diagonalizable
   HOME



picture info

Diagonalizable
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix. That is, if there exists an invertible matrix P and a diagonal matrix D such that . This is equivalent to (Such D are not unique.) This property exists for any linear map: for a finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix representation A = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, T is represented by Diagonalization is the process of finding the above P and and makes many subsequent computations easier. One can raise a diagonal matrix D to a power by simply raising the diagonal entries to that power. The determinant of a diagonal matrix is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathematics), matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as line (geometry), lines, plane (geometry), planes and rotation (mathematics), rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to Space of functions, function spaces. Linear algebra is also used in most sciences and fields of engineering because it allows mathematical model, modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvector
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi- dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semi-simplicity
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''simple'' objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context. For example, if ''G'' is a finite group, then a nontrivial finite-dimensional representation ''V'' over a field is said to be ''simple'' if the only subrepresentations it contains are either or ''V'' (these are also called irreducible representations). Now Maschke's theorem says that any finite-dimensional representation of a finite group is a direct sum of simple representations (provided the characteristic of the base field does not divide the order of the group). So in the case of finite groups with this condition, every finite-dimensional representation is semi-simple. Espec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Similarity
In linear algebra, two ''n''-by-''n'' matrices and are called similar if there exists an invertible ''n''-by-''n'' matrix such that B = P^ A P . Similar matrices represent the same linear map under two possibly different bases, with being the change-of-basis matrix. A transformation is called a similarity transformation or conjugation of the matrix . In the general linear group, similarity is therefore the same as conjugacy, and similar matrices are also called conjugate; however, in a given subgroup of the general linear group, the notion of conjugacy may be more restrictive than similarity, since it requires that be chosen to lie in . Motivating example When defining a linear transformation, it can be the case that a change of basis can result in a simpler form of the same transformation. For example, the matrix representing a rotation in when the axis of rotation is not aligned with the coordinate axis can be complicated to compute. If the axis of rotation were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Defective Matrix
In linear algebra, a defective matrix is a square matrix that does not have a complete basis of eigenvectors, and is therefore not diagonalizable. In particular, an n \times n matrix is defective if and only if it does not have n linearly independent eigenvectors. A complete basis is formed by augmenting the eigenvectors with generalized eigenvectors, which are necessary for solving defective systems of ordinary differential equations and other problems. An n \times n defective matrix always has fewer than n distinct eigenvalues, since distinct eigenvalues always have linearly independent eigenvectors. In particular, a defective matrix has one or more eigenvalues \lambda with algebraic multiplicity m > 1 (that is, they are multiple roots of the characteristic polynomial), but fewer than m linearly independent eigenvectors associated with \lambda. If the algebraic multiplicity of \lambda exceeds its geometric multiplicity (that is, the number of linearly independent eigenvectors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is \left begin 3 & 0 \\ 0 & 2 \end\right/math>, while an example of a 3×3 diagonal matrix is \left begin 6 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end\right/math>. An identity matrix of any size, or any multiple of it is a diagonal matrix called a ''scalar matrix'', for example, \left begin 0.5 & 0 \\ 0 & 0.5 \end\right/math>. In geometry, a diagonal matrix may be used as a '' scaling matrix'', since matrix multiplication with it results in changing scale (size) and possibly also shape; only a scalar matrix results in uniform change in scale. Definition As stated above, a diagonal matrix is a matrix in which all off-diagonal entries are zero. That is, the matrix with columns and rows is diagonal if \forall i,j \in \, i \ne j \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (: matrices) is a rectangle, rectangular array or table of numbers, symbol (formal), symbols, or expression (mathematics), expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a " matrix", or a matrix of dimension . Matrices are commonly used in linear algebra, where they represent linear maps. In geometry, matrices are widely used for specifying and representing geometric transformations (for example rotation (mathematics), rotations) and coordinate changes. In numerical analysis, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jordan–Chevalley Decomposition
In mathematics, specifically linear algebra, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator in a unique way as the sum of two other linear operators which are simpler to understand. Specifically, one part is potentially diagonalisable and the other is nilpotent. The two parts are polynomials in the operator, which makes them behave nicely in algebraic manipulations. The decomposition has a short description when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than are needed for the existence of a Jordan normal form. Hence the Jordan–Chevalley decomposition can be seen as a generalisation of the Jordan normal form, which is also reflected in several proofs of it. It is closely related to the Wedderburn principal theorem about associative algebras, which also leads to several analogues in Lie algebras. Analogues of the Jordan–Chevalley decomposition also exist for elements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent Matrix
In linear algebra, a nilpotent matrix is a square matrix ''N'' such that :N^k = 0\, for some positive integer k. The smallest such k is called the index of N, sometimes the degree of N. More generally, a nilpotent transformation is a linear transformation L of a vector space such that L^k = 0 for some positive integer k (and thus, L^j = 0 for all j \geq k). Both of these concepts are special cases of a more general concept of nilpotent, nilpotence that applies to elements of ring (algebra), rings. Examples Example 1 The matrix : A = \begin 0 & 1 \\ 0 & 0 \end is nilpotent with index 2, since A^2 = 0. Example 2 More generally, any n-dimensional triangular matrix with zeros along the main diagonal is nilpotent, with index \le n . For example, the matrix : B=\begin 0 & 2 & 1 & 6\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0 \end is nilpotent, with : B^2=\begin 0 & 0 & 2 & 7\\ 0 & 0 & 0 & 3\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end ;\ B^3=\begin 0 & 0 & 0 & 6\\ 0 & 0 & 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis Vectors
In mathematics, a set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Basis vectors find applications in the study of crystal structures and frames of reference. Definition A basis of a vector space over a field (such as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis (linear Algebra)
In mathematics, a Set (mathematics), set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension (vector space), dimension of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Basis vectors find applications in the study of crystal structures and frame of reference, frames of reference. De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]