In
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, a defective matrix is a
square matrix
In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Squ ...
that does not have a complete
basis of
eigenvector
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by ...
s, and is therefore not
diagonalizable. In particular, an
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
is defective
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it does not have
linearly independent
In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concep ...
eigenvectors.
A complete basis is formed by augmenting the eigenvectors with
generalized eigenvectors, which are necessary for solving defective systems of
ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematic ...
s and other problems.
An
defective matrix always has fewer than
distinct
eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
s, since distinct eigenvalues always have linearly independent eigenvectors. In particular, a defective matrix has one or more eigenvalues
with
algebraic multiplicity (that is, they are multiple
roots
A root is the part of a plant, generally underground, that anchors the plant body, and absorbs and stores water and nutrients.
Root or roots may also refer to:
Art, entertainment, and media
* ''The Root'' (magazine), an online magazine focusin ...
of the
characteristic polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
), but fewer than
linearly independent eigenvectors associated with
. If the algebraic multiplicity of
exceeds its
geometric multiplicity
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a c ...
(that is, the number of linearly independent eigenvectors associated with
), then
is said to be a defective eigenvalue.
However, every eigenvalue with algebraic multiplicity
always has
linearly independent generalized eigenvectors.
A
real symmetric matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,
Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with ...
and more generally a
Hermitian matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
, and a
unitary matrix, is never defective; more generally, a
normal matrix
In mathematics, a complex square matrix is normal if it commutes with its conjugate transpose :
:A \text \iff A^*A = AA^* .
The concept of normal matrices can be extended to normal operators on infinite-dimensional normed spaces and to nor ...
(which includes Hermitian and unitary matrices as special cases) is never defective.
Jordan block
Any nontrivial
Jordan block
In the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring (whose identities are the zero 0 and one 1), where each block along the diagonal, called a Jordan block, has th ...
of size
or larger (that is, not completely diagonal) is defective. (A diagonal matrix is a special case of the Jordan normal form with all trivial Jordan blocks of size
and is not defective.) For example, the
Jordan block
:
has an
eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
,
with algebraic multiplicity
(or greater if there are other Jordan blocks with the same eigenvalue), but only one distinct eigenvector
, where
The other canonical basis vectors
form a chain of generalized eigenvectors such that
for
.
Any defective matrix has a nontrivial
Jordan normal form
\begin
\lambda_1 1\hphantom\hphantom\\
\hphantom\lambda_1 1\hphantom\\
\hphantom\lambda_1\hphantom\\
\hphantom\lambda_2 1\hphantom\hphantom\\
\hphantom\hphantom\lambda_2\hphantom\\
\hphantom\lambda_3\hphantom\\
\hphantom\ddots\hphantom\\
...
, which is as close as one can come to
diagonalization of such a matrix.
Example
A simple example of a defective matrix is
:
which has a double
eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
of 3 but only one distinct eigenvector
:
(and constant multiples thereof).
See also
*
Notes
References
*
*
{{Matrix classes
Linear algebra
Matrices (mathematics)