Delta Operator
   HOME
*





Delta Operator
In mathematics, a delta operator is a shift-equivariant linear operator Q\colon\mathbb \longrightarrow \mathbb /math> on the vector space of polynomials in a variable x over a field \mathbb that reduces degrees by one. To say that Q is shift-equivariant means that if g(x) = f(x + a), then :.\, In other words, if f is a "shift" of g, then Qf is also a shift of Qg, and has the same "shifting vector" a. To say that an operator ''reduces degree by one'' means that if f is a polynomial of degree n, then Qf is either a polynomial of degree n-1, or, in case n = 0, Qf is 0. Sometimes a ''delta operator'' is defined to be a shift-equivariant linear transformation on polynomials in x that maps x to a nonzero constant. Seemingly weaker than the definition given above, this latter characterization can be shown to be equivalent to the stated definition when \mathbb has characteristic zero, since shift-equivariance is a fairly strong condition. Examples * The forward difference operator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cybernetics
Cybernetics is a wide-ranging field concerned with circular causality, such as feedback, in regulatory and purposive systems. Cybernetics is named after an example of circular causal feedback, that of steering a ship, where the helmsperson maintains a steady course in a changing environment by adjusting their steering in continual response to the effect it is observed as having. Cybernetics is concerned with circular causal processes such as steering however they are embodied,Ashby, W. R. (1956). An introduction to cybernetics. London: Chapman & Hall, p. 1. including in ecological, technological, biological, cognitive, and social systems, and in the context of practical activities such as designing, learning, managing, conversation, and the practice of cybernetics itself. Cybernetics' transdisciplinary and "antidisciplinary" character has meant that it intersects with a number of other fields, leading to it having both wide influence and diverse interpretations. Cybernetics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Umbral Calculus
In mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain "shadowy" techniques used to "prove" them. These techniques were introduced by John Blissard and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. Short history In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing. In the 1970s, Steven Roman, Gian-Carlo Rota, and others developed the umbral calculus by means of linear functionals on spaces of polynomials. Currently, ''umbral calculus'' refers to the study of Sheffer sequences, including polynomial sequences of binomial type and Appell sequences, but may encompass systematic correspondence techniques of the calculus of finite differences. The 19th-century umbral calculus The method is a notational procedure used for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shift Operator
In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift operators are examples of linear operators, important for their simplicity and natural occurrence. The shift operator action on functions of a real variable plays an important role in harmonic analysis, for example, it appears in the definitions of almost periodic functions, positive-definite functions, derivatives, and convolution. Shifts of sequences (functions of an integer variable) appear in diverse areas such as Hardy spaces, the theory of abelian varieties, and the theory of symbolic dynamics, for which the baker's map is an explicit representation. Definition Functions of a real variable The shift operator (where ) takes a function on R to its translation , : T^t f(x) = f_t(x) = f(x+t)~. A practical operational calculus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pincherle Derivative
In mathematics, the Pincherle derivative T' of a linear operator T: \mathbb \to \mathbb /math> on the vector space of polynomials in the variable ''x'' over a field \mathbb is the commutator of T with the multiplication by ''x'' in the algebra of endomorphisms \operatorname(\mathbb . That is, T' is another linear operator T': \mathbb \to \mathbb /math> :T' := ,x= Tx-xT = -\operatorname(x)T,\, (for the origin of the \operatorname notation, see the article on the adjoint representation) so that :T'\=T\-xT\\qquad\forall p(x)\in \mathbb This concept is named after the Italian mathematician Salvatore Pincherle (1853–1936). Properties The Pincherle derivative, like any commutator, is a derivation, meaning it satisfies the sum and products rules: given two linear operators S and T belonging to \operatorname\left( \mathbb \right), #(T + S)^\prime = T^\prime + S^\prime; #(TS)^\prime = T^\prime\!S + TS^\prime where TS = T \circ S is the composition of operators. One also ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheffer Sequence
In mathematics, a Sheffer sequence or poweroid is a polynomial sequence, i.e., a sequence of polynomials in which the index of each polynomial equals its degree, satisfying conditions related to the umbral calculus in combinatorics. They are named for Isador M. Sheffer. Definition Fix a polynomial sequence (''p''''n''). Define a linear operator ''Q'' on polynomials in ''x'' by :Qp_n(x) = np_(x)\, . This determines ''Q'' on all polynomials. The polynomial sequence ''p''''n'' is a ''Sheffer sequence'' if the linear operator ''Q'' just defined is ''shift-equivariant''; such a ''Q'' is then a delta operator. Here, we define a linear operator ''Q'' on polynomials to be ''shift-equivariant'' if, whenever ''f''(''x'') = ''g''(''x'' + ''a'') = ''T''''a'' ''g''(''x'') is a "shift" of ''g''(''x''), then (''Qf'')(''x'') = (''Qg'')(''x'' + ''a''); i.e., ''Q'' commutes with every shift operator: ''T''''a''''Q'' = ''QT''''a''. Properties The set of all Sheffer sequences is a group un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binomial Type
In mathematics, a polynomial sequence, i.e., a sequence of polynomials indexed by non-negative integers \left\ in which the index of each polynomial equals its degree, is said to be of binomial type if it satisfies the sequence of identities :p_n(x+y)=\sum_^n\, p_k(x)\, p_(y). Many such sequences exist. The set of all such sequences forms a Lie group under the operation of umbral composition, explained below. Every sequence of binomial type may be expressed in terms of the Bell polynomials. Every sequence of binomial type is a Sheffer sequence (but most Sheffer sequences are not of binomial type). Polynomial sequences put on firm footing the vague 19th century notions of umbral calculus. Examples * In consequence of this definition the binomial theorem can be stated by saying that the sequence is of binomial type. * The sequence of " lower factorials" is defined by(x)_n=x(x-1)(x-2)\cdot\cdots\cdot(x-n+1).(In the theory of special functions, this same notation denotes upper fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Sequence
In mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial. Polynomial sequences are a topic of interest in enumerative combinatorics and algebraic combinatorics, as well as applied mathematics. Examples Some polynomial sequences arise in physics and approximation theory as the solutions of certain ordinary differential equations: * Laguerre polynomials * Chebyshev polynomials * Legendre polynomials * Jacobi polynomials Others come from statistics: * Hermite polynomials Many are studied in algebra and combinatorics: * Monomials * Rising factorials * Falling factorials * All-one polynomials * Abel polynomials * Bell polynomials * Bernoulli polynomials * Cyclotomic polynomials * Dickson polynomials * Fibonacci polynomials * Lagrange polynomials * Lucas polynomials * Spread polynomials * Touchard polynomials * Rook polynomials Classes of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Euler Approximation
In mathematics and computational science, the Euler method (also called forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who treated it in his book ''Institutionum calculi integralis'' (published 1768–1870). The Euler method is a first-order method, which means that the local error (error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size. The Euler method often serves as the basis to construct more complex methods, e.g., predictor–corrector method. Informal geometrical description Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]