Defunctionalization
   HOME





Defunctionalization
In programming languages, defunctionalization is a compile-time transformation which eliminates higher-order functions, replacing them by a single first-order ''apply'' function. The technique was first described by John C. Reynolds in his 1972 paper, "Definitional Interpreters for Higher-Order Programming Languages". Reynolds' observation was that a given program contains only finitely many function abstractions, so that each can be assigned and replaced by a unique identifier. Every function application within the program is then replaced by a call to the ''apply'' function with the function identifier as the first argument. The ''apply'' function's only job is to dispatch on this first argument, and then perform the instructions denoted by the function identifier on the remaining arguments. One complication to this basic idea is that function abstractions may reference free variables. In such situations, defunctionalization must be preceded by closure conversion (lambda li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure (computer Science)
In programming languages, a closure, also lexical closure or function closure, is a technique for implementing lexically scoped name binding in a language with first-class functions. Operationally, a closure is a record storing a function together with an environment. The environment is a mapping associating each free variable of the function (variables that are used locally, but defined in an enclosing scope) with the value or reference to which the name was bound when the closure was created. Unlike a plain function, a closure allows the function to access those ''captured variables'' through the closure's copies of their values or references, even when the function is invoked outside their scope. History and etymology The concept of closures was developed in the 1960s for the mechanical evaluation of expressions in the λ-calculus and was first fully implemented in 1970 as a language feature in the PAL programming language to support lexically scoped first-class func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Programming Languages
A programming language is a system of notation for writing computer programs. Programming languages are described in terms of their syntax (form) and semantics (meaning), usually defined by a formal language. Languages usually provide features such as a type system, variables, and mechanisms for error handling. An implementation of a programming language is required in order to execute programs, namely an interpreter or a compiler. An interpreter directly executes the source code, while a compiler produces an executable program. Computer architecture has strongly influenced the design of programming languages, with the most common type ( imperative languages—which implement operations in a specified order) developed to perform well on the popular von Neumann architecture. While early programming languages were closely tied to the hardware, over time they have developed more abstraction to hide implementation details for greater simplicity. Thousands of programming langua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Signature
In computer science, a type signature or type annotation defines the inputs and outputs of a function, subroutine or method. A type signature includes the number, types, and order of the function's arguments. One important use of a type signature is for function overload resolution, where one particular definition of a function to be called is selected among many overloaded forms. Examples C/C++ In C and C++, the type signature is declared by what is commonly known as a function prototype. In C/C++, a function declaration reflects its use; for example, a function pointer with the signature would be called as: char c; double d; int retVal = (*fPtr)(c, d); Erlang In Erlang, type signatures may be optionally declared, as: -spec function_name(type1(), type2(), ...) -> out_type(). For example: -spec is_even(number()) -> boolean(). Haskell A type signature in Haskell generally takes the following form: functionName :: arg1Type -> arg2Type -> ... -> argNType N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Object
In computer programming, a function object is a construct allowing an object (computer science), object to be invoked or called as if it were an ordinary subroutine, function, usually with the same syntax (a function parameter that can also be a function). In some languages, particularly C++, function objects are often called functors (not related to Functor (functional programming), the functional programming concept). Description A typical use of a function object is in writing callback (computer science), callback functions. A callback in procedural programming, procedural languages, such as C (programming language), C, may be performed by using function pointers. However it can be difficult or awkward to pass a state into or out of the callback function. This restriction also inhibits more dynamic behavior of the function. A function object solves those problems since the function is really a facade pattern, façade for a full object, carrying its own state. Many modern (an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Object-oriented Programming
Object-oriented programming (OOP) is a programming paradigm based on the concept of '' objects''. Objects can contain data (called fields, attributes or properties) and have actions they can perform (called procedures or methods and implemented in code). In OOP, computer programs are designed by making them out of objects that interact with one another. Many of the most widely used programming languages (such as C++, Java, and Python) support object-oriented programming to a greater or lesser degree, typically as part of multiple paradigms in combination with others such as imperative programming and declarative programming. Significant object-oriented languages include Ada, ActionScript, C++, Common Lisp, C#, Dart, Eiffel, Fortran 2003, Haxe, Java, JavaScript, Kotlin, Logo, MATLAB, Objective-C, Object Pascal, Perl, PHP, Python, R, Raku, Ruby, Scala, SIMSCRIPT, Simula, Smalltalk, Swift, Vala and Visual Basic.NET. History The idea of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Machine
In computer science, an abstract machine is a theoretical model that allows for a detailed and precise analysis of how a computer system functions. It is similar to a mathematical function in that it receives inputs and produces outputs based on predefined rules. Abstract machines vary from literal machines in that they are expected to perform correctly and independently of hardware. Abstract machines are "machines" because they allow step-by-step execution of programs; they are " abstract" because they ignore many aspects of actual ( hardware) machines. A typical abstract machine consists of a definition in terms of input, output, and the set of allowable operations used to turn the former into the latter. They can be used for purely theoretical reasons as well as models for real-world computer systems. In the theory of computation, abstract machines are often used in thought experiments regarding computability or to analyse the complexity of algorithms. This use of abstract mac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interpreter (computing)
In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution: # Parse the source code and perform its behavior directly; # Translate source code into some efficient intermediate representation or object code and immediately execute that; # Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter's virtual machine. Early versions of Lisp programming language and minicomputer and microcomputer BASIC dialects would be examples of the first type. Perl, Raku, Python, MATLAB, and Ruby are examples of the second, while UCSD Pascal is an example of the third type. Source programs are compiled ahead of time and stored as machine independent code, which is then linked at run-ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Olivier Danvy
Olivier Danvy is a French computer scientist specializing in programming languages, partial evaluation, and continuations. He is a professor at Yale-NUS College in Singapore. Danvy received his PhD degree from the Université Paris VI in 1986. He is notable for the number of scientific papers which acknowledge his help. Writing in ''Nature Nature is an inherent character or constitution, particularly of the Ecosphere (planetary), ecosphere or the universe as a whole. In this general sense nature refers to the Scientific law, laws, elements and phenomenon, phenomena of the physic ...'', editor Declan Butler reports on an analysis of acknowledgments on nearly one third of a million scientific papers and reports that Danvy is "the most thanked person in computer science". Danvy himself is quoted as being "stunned to find my name at the top of the list", ascribing his position to a "series of coincidences": he is multidisciplinary, is well travelled, is part of an internatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Languages
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner. Functional programming is sometimes treated as synonymous with purely functional programming, a subset of functional programming that treats all functions as deterministic mathematical functions, or pure functions. When a pure function is called with some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Pointer
A function pointer, also called a subroutine pointer or procedure pointer, is a pointer referencing executable code, rather than data. Dereferencing the function pointer yields the referenced function, which can be invoked and passed arguments just as in a normal function call. Such an invocation is also known as an "indirect" call, because the function is being invoked ''indirectly'' through a variable instead of ''directly'' through a fixed identifier or address. Function pointers allow different code to be executed at runtime. They can also be passed to a function to enable callbacks. Function pointers are supported by third-generation programming languages (such as PL/I, COBOL, Fortran, dBASE dBL, and C) and object-oriented programming languages (such as C++, C#, and D). Simple function pointers The simplest implementation of a function (or subroutine) pointer is as a variable containing the address of the function within executable memory. Older third-generati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arity
In logic, mathematics, and computer science, arity () is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and philosophy, arity may also be called adicity and degree. In linguistics, it is usually named valency. Examples In general, functions or operators with a given arity follow the naming conventions of ''n''-based numeral systems, such as binary and hexadecimal. A Latin prefix is combined with the -ary suffix. For example: * A nullary function takes no arguments. ** Example: f()=2 * A unary function takes one argument. ** Example: f(x)=2x * A binary function takes two arguments. ** Example: f(x,y)=2xy * A ternary function takes three arguments. ** Example: f(x,y,z)=2xyz * An ''n''-ary function takes ''n'' arguments. ** Example: f(x_1, x_2, \ldots, x_n)=2\prod_^n x_i Nullary A constant can be treated as the output of an operation o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Compile Time
In computer science, compile time (or compile-time) describes the time window during which a language's statements are converted into binary instructions for the processor to execute. The term is used as an adjective to describe concepts related to the context of program compilation, as opposed to concepts related to the context of program execution ( run time). For example, ''compile-time requirements'' are programming language requirements that must be met by source code before compilation and ''compile-time properties'' are properties of the program that can be reasoned about during compilation. The actual length of time it takes to compile a program is usually referred to as ''compilation time''. Overview Most compilers have at least the following compiler phases (which therefore occur at compile-time): syntax analysis, semantic analysis, and code generation. During optimization phases, constant expressions in the source code can also be evaluated at compile-time usin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]