Dots And Boxes
Dots and boxes is a pencil-and-paper game for two players (sometimes more). It was first published in the 19th century by French mathematician Édouard Lucas, who called it . It has gone by many other names, including dots and dashes, game of dots, dot to dot grid, boxes, and pigs in a pen. The game starts with an empty grid of dots. Usually two players take turns adding a single horizontal or vertical line between two unjoined adjacent dots. A player who completes the fourth side of a 1×1 box earns one point and takes another turn. A point is typically recorded by placing a mark that identifies the player in the box, such as an initial. The game ends when no more lines can be placed. The winner is the player with the most points.. The board may be of any size grid. When short on time, or to learn the game, a 2×2 board (3×3 dots) is suitable. A 5×5 board, on the other hand, is good for experts. Strategy For most novice players, the game begins with a phase of more-or-le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pencil And Paper Game
Paper-and-pencil games or paper-and-pen games (or some variation on those terms) are games that can be played solely with paper and pencils (or other writing implements), usually without erasing. They may be played to pass the time, as icebreakers, or for brain training. In recent times, they have been supplanted by mobile games. Some popular examples of pencil-and-paper games include tic-tac-toe, sprouts, dots and boxes, hangman, MASH, paper soccer, and spellbinder. The term is unrelated to the use in role-playing games to differentiate tabletop games from role-playing video games. Board games where pieces are never moved or removed from the board once being played, particularly abstract strategy games like Gomoku and Connect Four Connect Four (also known as Connect 4, Four Up, Plot Four, Find Four, Captain's Mistress, Four in a Row, Drop Four, and in the Soviet Union, Gravitrips) is a game in which the players choose a color and then take turns dropping colored token ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Édouard Lucas
__NOTOC__ François Édouard Anatole Lucas (; 4 April 1842 – 3 October 1891) was a French mathematician. Lucas is known for his study of the Fibonacci sequence. The related Lucas sequences and Lucas numbers are named after him. Biography Lucas was born in Amiens and educated at the École Normale Supérieure. He worked in the Paris Observatory and later became a professor of mathematics at the Lycée Saint Louis and the Lycée Charlemagne in Paris. Lucas served as an artillery officer in the French Army during the Franco-Prussian War of 1870–1871. In 1875, Lucas posed a challenge to prove that the only solution of the Diophantine equation :\sum_^ n^2 = M^2\; with ''N'' > 1 is when ''N'' = 24 and ''M'' = 70. This is known as the cannonball problem, since it can be visualized as the problem of taking a square arrangement of cannonballs on the ground and building a square pyramid out of them. It was not until 1918 that a proof (using elliptic functions) was found for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Monthly
''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. The editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The editor-in-chief heads all departments of the organization and is held accoun ... is Vadim Ponomarenko ( San Diego State University). The journal gives the Lester R. Ford Award annually to "authors of articles of expository excellence" published in the journal. Editors-in-chief The following persons are or have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dots-and-boxes
Dots and boxes is a pencil-and-paper game for two players (sometimes more). It was first published in the 19th century by French mathematician Édouard Lucas, who called it . It has gone by many other names, including dots and dashes, game of dots, dot to dot grid, boxes, and pigs in a pen. The game starts with an empty grid of dots. Usually two players take turns adding a single horizontal or vertical line between two unjoined adjacent dots. A player who completes the fourth side of a 1×1 box earns one point and takes another turn. A point is typically recorded by placing a mark that identifies the player in the box, such as an initial. The game ends when no more lines can be placed. The winner is the player with the most points.. The board may be of any size grid. When short on time, or to learn the game, a 2×2 board (3×3 dots) is suitable. A 5×5 board, on the other hand, is good for experts. Strategy For most novice players, the game begins with a phase of more-or-le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorial Game Theory
Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Research in this field has primarily focused on two-player games in which a ''position'' evolves through alternating ''moves'', each governed by well-defined rules, with the aim of achieving a specific winning condition. Unlike game theory, economic game theory, combinatorial game theory generally avoids the study of games of chance or games involving imperfect information, preferring instead games in which the current state and the full set of available moves are always known to both players. However, as mathematical techniques develop, the scope of analyzable games expands, and the boundaries of the field continue to evolve. Authors typically define the term "game" at the outset of academic papers, with definitions tailored to the specific game under analysis rather than reflecting the field’s full scope. Combinatorics, Comb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Impartial Game
In combinatorial game theory, an impartial game is a game in which the allowable moves depend only on the position and not on which of the two players is currently moving, and where the payoffs are symmetric. In other words, the only difference between player 1 and player 2 is that player 1 goes first. The game is played until a terminal position is reached. A terminal position is one from which no moves are possible. Then one of the players is declared the winner and the other the loser. Furthermore, impartial games are played with perfect information and no chance moves, meaning all information about the game and operations for both players are visible to both players. Impartial games include Nim, Sprouts, Kayles, Quarto, Cram, Chomp, Subtract a square, Notakto, and poset games. Go and chess are not impartial, as each player can only place or move pieces of their own color. Games such as poker, dice or dominos are not impartial games as they rely on chance. Impartial ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sprague–Grundy Theorem
In combinatorial game theory, the Sprague–Grundy theorem states that every impartial game under the normal play convention is equivalent to a one-heap game of nim, or to an infinite generalization of nim. It can therefore be represented as a natural number, the size of the heap in its equivalent game of nim, as an ordinal number in the infinite generalization, or alternatively as a nimber, the value of that one-heap game in an algebraic system whose addition operation combines multiple heaps to form a single equivalent heap in nim. The Grundy value or nim-value of any impartial game is the unique nimber that the game is equivalent to. In the case of a game whose positions are indexed by the natural numbers (like nim itself, which is indexed by its heap sizes), the sequence of nimbers for successive positions of the game is called the nim-sequence of the game. The Sprague–Grundy theorem and its proof encapsulate the main results of a theory discovered independently b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Play Convention
A normal play convention in a game is the method of determining the winner that is generally regarded as standard. For example: *Preventing the other player from being able to move *Being the first player to achieve a target *Holding the highest value hand *Taking the most card tricks In combinatorial game theory, the normal play convention of an impartial game is that the last player able to move is the winner. By contrast " misère games" involve upsetting the convention and declaring a winner the individual who would normally be considered the loser. References Gaming {{Game-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Graph
In the mathematics, mathematical discipline of graph theory, the dual graph of a planar graph is a graph that has a vertex (graph theory), vertex for each face (graph theory), face of . The dual graph has an edge (graph theory), edge for each pair of faces in that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge of has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of . The definition of the dual depends on the choice of embedding of the graph , so it is a property of plane graphs (graphs that are already embedded in the plane) rather than planar graphs (graphs that may be embedded but for which the embedding is not yet known). For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph. Historically, the first form of graph Duality (mathematics), duality to be recognized was ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph (discrete Mathematics)
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a Set (mathematics), set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |