HOME
*



picture info

Degrees Lovibond
When drinking beer, there are many factors to be considered. Principal among them are bitterness, the variety of flavours present in the beverage and their intensity, alcohol content, and colour. Standards for those characteristics allow a more objective and uniform determination to be made on the overall qualities of any beer. Colour "Degrees Lovibond" or "°L" scale is a measure of the colour of a substance, usually beer, whiskey, or sugar solutions. The determination of the degrees Lovibond takes place by comparing the colour of the substance to a series of amber to brown glass slides, usually by a colorimeter. The scale was devised by Joseph Williams Lovibond. The Standard Reference Method (SRM) and European Brewery Convention (EBC) methods have largely replaced it, with the SRM giving results approximately equal to the °L. The Standard Reference Method or SRM is a system modern brewers use to measure colour intensity, roughly darkness, of a beer or wort. The method ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ebulliometer
An ebulliometer is designed to accurately measure the boiling point of liquids by measuring the temperature of the vapor–liquid equilibrium either isobarically or isothermally. The primary components in a Świętosławski ebulliometer, which operates isobarically, are the boiler, the Cottrell pumps, the thermowell, and the condenser. Such an ebulliometer can be used for extremely accurate measurements of boiling temperature, molecular weights, mutual solubilities, and solvent purities by using a resistance thermometer (RTD) to measure the near-equilibrium conditions of the thermowell. The ebulliometer is frequently used for measuring the alcohol content of dry wines. See also Sweetness of wine and Oechsle scale The Oechsle scale is a hydrometer scale measuring the density of grape must, which is an indication of grape ripeness and sugar content used in wine-making. It is named for Ferdinand Oechsle (1774–1852) and it is widely used in the German, Swiss .... References * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Joseph Louis Gay-Lussac
Joseph Louis Gay-Lussac (, , ; 6 December 1778 – 9 May 1850) was a French chemist and physicist. He is known mostly for his discovery that water is made of two parts hydrogen and one part oxygen (with Alexander von Humboldt), for two laws related to gases, and for his work on alcohol–water mixtures, which led to the degrees Gay-Lussac used to measure alcoholic beverages in many countries. Biography Gay-Lussac was born at Saint-Léonard-de-Noblat in the present-day department of Haute-Vienne. The father of Joseph Louis Gay, Anthony Gay, son of a doctor, was a lawyer and prosecutor and worked as a judge in Noblat Bridge. Father of two sons and three daughters, he owned much of the Lussac village and usually added the name of this hamlet of the Haute-Vienne to his name, following a custom of the Ancien Régime. Towards the year 1803, father and son finally adopted the name Gay-Lussac. During the Revolution, on behalf of the Law of Suspects, his father, former king's atto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sucrose
Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula . For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Suga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mass Fraction (chemistry)
In chemistry, the mass fraction of a substance within a mixture is the ratio w_i (alternatively denoted Y_i) of the mass m_i of that substance to the total mass m_\text of the mixture. Expressed as a formula, the mass fraction is: : w_i = \frac . Because the individual masses of the ingredients of a mixture sum to m_\text, their mass fractions sum to unity: : \sum_^ w_i = 1. Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called ''percentage by weight'', abbreviated ''wt%''; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size; mole fraction (percentage by moles, mol%) and volume fraction ( percentage by volume, vol%) are others. When the prevalences of interest are those of individual chemical elements, rather than of compounds or other substances, the term ''mass fraction'' can also refer to the ratio of the mass of an element to the total mass of a sampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fritz Plato
Fritz Plato (1858 – 1938) was a German chemist. The unit for specific gravity Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water (molecule), wa ... of liquids, degree Plato, is named after him. Plato made a career as a civil servant in professions related to chemistry and was a civil servant. References 1858 births 1938 deaths 19th-century German chemists 20th-century German chemists {{Germany-chemist-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Brix
Degrees Brix (symbol °Bx) is a measure of the dissolved solids in a liquid, and is commonly used to measure dissolved sugar content of an aqueous solution. One degree Brix is 1 gram of sucrose in 100 grams of solution and represents the strength of the solution as percentage by mass. If the solution contains dissolved solids other than pure sucrose, then the °Bx only approximates the dissolved solid content. For example, when one adds equal amounts of salt and sugar to equal amounts of water, the degrees of refraction (BRIX) of the salt solution rises faster than the sugar solution. The °Bx is traditionally used in the wine, sugar, carbonated beverage, fruit juice, fresh produce, maple syrup and honey industries. Comparable scales for indicating sucrose content are: the Plato scale (°P), which is widely used by the brewing industry; the Oechsle scale used in German and Swiss wine making industries, amongst others; and the Balling scale, which is the oldest of the three systems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adolf Ferdinand Wenceslaus Brix
Adolf Ferdinand Wenceslaus Brix (20 February 1798 – 14 February 1870) was a German mathematician and engineer.Allgemeine Deutsche Biographie, volume 3 (1876), p. 335: Brix: Adolf Ferdinand Wenceslaus B.
, :s:de:ADB:Brix, Adolf Ferdinand Wenceslaus, corresponding Wikisource text The unit for specific gravity of liquids, degree Brix (°Bx), is named after him. Brix made a career as a civil servant in professions related to civil engineering, measurements and manufacture (1827 ''Bauconducteur'', 1834 ''Fabriken-Commisionsrath'', 1853 ''geheimer Regierungsrath'') and retired in 1866 (when he was promoted to ''geheimer Oberregierungsrath''). He was director of the Royal Prussian Commission for Measurements, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Slide Rule
The slide rule is a mechanical analog computer which is used primarily for multiplication and division, and for functions such as exponents, roots, logarithms, and trigonometry. It is not typically designed for addition or subtraction, which is usually performed using other methods. Maximum accuracy for standard linear slide rules is about three decimal significant digits, while scientific notation is used to keep track of the order of magnitude of results. Slide rules exist in a diverse range of styles and generally appear in a linear, circular or cylindrical form, with slide rule scales inscribed with standardized Graduation (instrument), graduated markings. Slide rules manufactured for specialized fields such as aviation or finance typically feature additional scales that aid in specialized calculations particular to those fields. The slide rule is closely related to nomograms used for application-specific computations. Though similar in name and appearance to a standard ruler ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oscillating U-tube
{{no footnotes, date=March 2014 The oscillating U-tube is a technique to determine the density of liquids and gases based on an electronic measurement of the frequency of oscillation, from which the density value is calculated. This measuring principle is based on the Mass-Spring Model. The sample is filled into a container with oscillation capacity. The eigenfrequency of this container is influenced by the sample's mass. This container with oscillation capacity is a hollow, U-shaped glass tube (oscillating U-tube) which is electronically excited into undamped oscillation. The two branches of the U-shaped oscillator function as its spring elements. The direction of oscillation is normal to the level of the two branches. The oscillator's eigenfrequency is only influenced by the part of the sample that is actually involved in the oscillation. The volume involved in the oscillation is limited by the stationary oscillation knots at the bearing points of the oscillator. If the oscill ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pycnometer
Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest (at ); for gases, the reference is air at room temperature (). The term "relative density" (often abbreviated r.d. or RD) is often preferred in scientific usage, whereas the term "specific gravity" is deprecated. If a substance's relative density is less than 1 then it is less dense than the reference; if greater than 1 then it is denser than the reference. If the relative density is exactly 1 then the densities are equal; that is, equal volumes of the two substances have the same mass. If the reference material is water, then a substance with a relative density (or specific gravity) less than 1 will float in water. For example, an ice cube, with a relative density of about 0.91, will float. A substance with a relative density greater t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]