Cyclic Nucleotide-binding Domain
   HOME
*





Cyclic Nucleotide-binding Domain
Proteins that bind cyclic nucleotides (cAMP or cGMP) share a structural domain of about 120 residues. The best studied of these proteins is the prokaryotic catabolite gene activator (also known as the cAMP receptor protein) (gene crp) where such a domain is known to be composed of three alpha-helices and a distinctive eight-stranded, antiparallel beta-barrel structure. There are six invariant amino acids in this domain, three of which are glycine residues that are thought to be essential for maintenance of the structural integrity of the beta-barrel. cAMP- and cGMP-dependent protein kinases (cAPK and cGPK) contain two tandem copies of the cyclic nucleotide-binding domain. The cAPK's are composed of two different subunits, a catalytic chain and a regulatory chain, which contains both copies of the domain. The cGPK's are single chain enzymes that include the two copies of the domain in their N-terminal section. Vertebrate cyclic nucleotide-gated ion-channels also contain this domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Adenosine Monophosphate
Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms, conveying the cAMP-dependent pathway. History Earl Sutherland of Vanderbilt University won a Nobel Prize in Physiology or Medicine in 1971 "for his discoveries concerning the mechanisms of the action of hormones", especially epinephrine, via second messengers (such as cyclic adenosine monophosphate, cyclic AMP). Synthesis Cyclic adenosine monophosphate, AMP is synthesized from Adenosine triphosphate, ATP by adenylate cyclase located on the inner side of the plasma membrane and anchored at various locations in the interior of the cell. Adenylate cyclase is ''activated'' by a range of signaling molecules through the activation of adenylate cyclase stimulatory G (Gs alpha subunit, Gs)-protein-coupled recep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RAPGEF3
Rap guanine nucleotide exchange factor 3 also known as exchange factor directly activated by cAMP 1 (EPAC1) or cAMP-regulated guanine nucleotide exchange factor I (cAMP-GEFI) is a protein that in humans is encoded by the ''RAPGEF3'' gene. As the name suggests, EPAC proteins (EPAC1 and EPAC2) are a family of intracellular sensors for cAMP, and function as nucleotide exchange factors for the Rap subfamily of RAS-like small GTPases. History and discovery Since the landmark discovery of the prototypic second messenger cAMP in 1957, three families of eukaryotic cAMP receptors have been identified to mediate the intracellular functions of cAMP. While protein kinase A (PKA) or cAMP-dependent protein kinase and cyclic nucleotide regulated ion channel (CNG and HCN) were initially unveiled in 1968 and 1985 respectively; EPAC genes were discovered in 1998 independently by two research groups. Kawasaki et al. identified cAMP-GEFI and cAMP-GEFII as novel genes enriched in brain using a diffe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




RAPGEF2
Rap guanine nucleotide exchange factor 2 is a protein that in humans is encoded by the ''RAPGEF2'' gene. RAPGEF2 is a cyclic AMP binding protein. Function Members of the RAS subfamily of GTPases function in signal transduction as GTP/GDP-regulated switches that cycle between inactive GDP- and active GTP-bound states. Guanine nucleotide exchange factors (GEFs), such as RAPGEF2, serve as RAS activators by promoting acquisition of GTP to maintain the active GTP-bound state and are the key link between cell surface receptors and RAS activation. Interactions RAPGEF2 has been shown to interact with RAP1A and RALGDS Ral guanine nucleotide dissociation stimulator is a protein that is encoded by the ''RALGDS'' gene in humans. Interactions RALGDS has been shown to interact with: * Arrestin beta 1, * Arrestin beta 2, * HRAS, * KRAS, * MRAS, * RAP1A, * RA .... References Further reading

* * * * * * * * * * * {{protein-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PRKG1
cGMP-dependent protein kinase 1, alpha isozyme is an enzyme that in humans is encoded by the ''PRKG1'' gene. Interactions PRKG1 has been shown to interact with: * GTF2I, * ITPR1, * MRVI1, * RGS2, and * TNNT1 Slow skeletal muscle troponin T (sTnT) is a protein that in humans is encoded by the ''TNNT1'' gene. The TNNT1 gene is located at 19q13.4 in the human chromosomal genome, encoding the slow twitch skeletal muscle isoform of troponin T (ssTnT). ss .... References Further reading * * * * * * * * * * * * * * * * * * EC 2.7.11 {{gene-10-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PRKAR2B
cAMP-dependent protein kinase type II-beta regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR2B'' gene. Function cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase (PKA), which transduces the signal through phosphorylation of different target proteins. The inactive holoenzyme of PKA is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits of PKA have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. This subunit has been shown to interact with and suppress the transcriptional activity of the cAMP responsive element binding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PRKAR2A
cAMP-dependent protein kinase type II-alpha regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR2A'' gene. Function cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent Protein Kinase, more commonly called Protein Kinase A (PKA), which transduces the signal through phosphorylation of different target proteins. The inactive holoenzyme of PKA is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits of PKA have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. It may interact with various A-kinase anchoring proteins (AKAPs) and determine the sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PRKAR1B
cAMP-dependent protein kinase type I-beta regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR1B'' gene. Clinical significance Mutations in PRKAR1B cause neurodegenerative disorder. Interactions PRKAR1B has been shown to interact with AKAP1 and PRKAR1A cAMP-dependent protein kinase type I-alpha regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR1A'' gene. Function cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activ .... References Further reading * * * * * * * * * * * * * * * * * External links * {{protein-stub Genes on human chromosome 7 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PRKAR1A
cAMP-dependent protein kinase type I-alpha regulatory subunit is an enzyme that in humans is encoded by the ''PRKAR1A'' gene. Function cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase A ( PKA), which transduces the signal through phosphorylation of different target proteins. The inactive holoenzyme of PKA is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits of PKA have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This protein was found to be a tissue-specific extinguisher that down-regulates the expression of seven liver genes in hepatoma x fibroblast hybrids Three alternatively spliced transcript varia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PNPLA6
Neuropathy target esterase, also known as patatin-like phospholipase domain-containing protein 6 (PNPLA6), is an esterase enzyme that in humans is encoded by the ''PNPLA6'' gene. Neuropathy target esterase is a phospholipase that deacetylates intracellular phosphatidylcholine to produce glycerophosphocholine. It is thought to function in neurite outgrowth and process elongation during neuronal differentiation. The protein is anchored to the cytoplasmic face of the endoplasmic reticulum in both neurons and non-neuronal cells. Function Neuropathy target esterase is an enzyme with phospholipase B activity: it sequentially hydrolyses both fatty acids from the major membrane lipid phosphatidylcholine, generating water-soluble glycerophosphocholine. In eukaryotic cells, NTE is anchored to the cytoplasmic face of the endoplasmic reticulum membrane. In mammals, it is particularly abundant in neurons, the placenta, and the kidney. Loss of NTE activity results in abnormally-elevated lev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]