Coset Construction
   HOME
*





Coset Construction
In mathematics, the coset construction (or GKO construction) is a method of constructing unitary highest weight representations of the Virasoro algebra, introduced by Peter Goddard, Adrian Kent and David Olive (1986). The construction produces the complete discrete series In mathematics, a discrete series representation is an irreducible unitary representation of a locally compact topological group ''G'' that is a subrepresentation of the left regular representation of ''G'' on L²(''G''). In the Plancherel meas ... of highest weight representations of the Virasoro algebra and demonstrates their unitarity, thus establishing the classification of unitary highest weight representations. References * * * * Conformal field theory Lie algebras {{quantum-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Highest Weight Representation
In the mathematical field of representation theory, a weight of an algebra ''A'' over a field F is an algebra homomorphism from ''A'' to F, or equivalently, a one-dimensional representation of ''A'' over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space. Motivation and general concept Given a set ''S'' of n\times n matrices over the same field, each of which is diagonalizable, and any two of which commute, it is always possible to simultaneously diagonalize all of the elements of ''S''.In fact, given a set of commuting matrices over an algebraically closed field, they are simultaneously triangularizable, without needing to assume that they a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virasoro Algebra
In mathematics, the Virasoro algebra (named after the physicist Miguel Ángel Virasoro) is a complex Lie algebra and the unique central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory. Definition The Virasoro algebra is spanned by generators for and the central charge . These generators satisfy ,L_n0 and The factor of 1/12 is merely a matter of convention. For a derivation of the algebra as the unique central extension of the Witt algebra, see derivation of the Virasoro algebra. The Virasoro algebra has a presentation in terms of two generators (e.g. 3 and −2) and six relations. Representation theory Highest weight representations A highest weight representation of the Virasoro algebra is a representation generated by a primary state: a vector v such that : L_ v = 0, \quad L_0 v = hv, where the number is called the conformal dimension or conformal weight of v.P. Di Francesco, P. Mathieu, and D. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Goddard (physicist)
Peter Goddard (born 3 September 1945) is a British mathematical physicist who works in string theory and conformal field theory. Among his many contributions to these fields is the Goddard–Thorn theorem (proved together with Charles Thorn). Biography Goddard was educated at Emanuel School and the University of Cambridge, where he was a professor in the Department of Applied Mathematics and Theoretical Physics (DAMTP), and founding deputy director of the Isaac Newton Institute for Mathematical Sciences. He was Master of St John's College from 1994 until 2004. He was Director of the Institute for Advanced Study from January 2004 through June 2012. He is now a professor in the Institute's School of Natural Sciences. He was elected to the Royal Society in 1989, was awarded the Dirac Medal and Medal of the International Centre for Theoretical Physics in 1997, and was made a Commander of the Order of the British Empire The Most Excellent Order of the British Empire is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adrian Kent
Adrian Kent is a British theoretical physicist, Professor of Quantum Physics at the University of Cambridge, member of the Centre for Quantum Information and Foundations, and Distinguished Visiting Research Chair at the Perimeter Institute for Theoretical Physics. His research areas are the foundations of quantum theory, quantum information science and quantum cryptography. He is known as the inventor of relativistic quantum cryptography. In 1999 he published the first unconditionally secure protocols for bit commitment and coin tossing, which were also the first relativistic cryptographic protocols. He is a co-inventor of quantum tagging, or quantum position authentication, providing the first schemes for position-based quantum cryptography. In 2005 he published with Lucien Hardy and Jonathan Barrett the first security proof of quantum key distribution based on the no-signalling principle. Work Field theory Kent's early contributions to physics were on topics related to co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




David Olive
David Ian Olive ( ; 16 April 1937 – 7 November 2012) was a British theoretical physicist. Olive made fundamental contributions to string theory and duality theory, he is particularly known for his work on the GSO projection and Montonen–Olive duality. He was professor of physics at Imperial College, London, from 1984 to 1992. In 1992 he moved to Swansea University to help set up the new theoretical physics group. He was awarded the Dirac Prize and Medal of the International Centre for Theoretical Physics in 1997. He was a Founding Fellow of the Learned Society of Wales. He was elected as a fellow of the Royal Society in 1987, and appointed CBE in 2002. Biography Early life and education David Olive was born in Middlesex in 1937 and educated at the Royal High School, Edinburgh and Edinburgh University. He then moved to St John's College, Cambridge, obtaining his PhD under the supervision of John Taylor in 1963. He has 2 daughters and a granddaughter. Career After a sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Series
In mathematics, a discrete series representation is an irreducible unitary representation of a locally compact topological group ''G'' that is a subrepresentation of the left regular representation of ''G'' on L²(''G''). In the Plancherel measure, such representations have positive measure. The name comes from the fact that they are exactly the representations that occur discretely in the decomposition of the regular representation. Properties If ''G'' is unimodular, an irreducible unitary representation ρ of ''G'' is in the discrete series if and only if one (and hence all) matrix coefficient :\langle \rho(g)\cdot v, w \rangle \, with ''v'', ''w'' non-zero vectors is square-integrable on ''G'', with respect to Haar measure. When ''G'' is unimodular, the discrete series representation has a formal dimension ''d'', with the property that :d\int \langle \rho(g)\cdot v, w \rangle \overlinedg =\langle v, x \rangle\overline for ''v'', ''w'', ''x'', ''y'' in the representation. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Field Theory
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points. Scale invariance vs conformal invariance In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions to argue that it should appear in nature. The basic idea behind its plausibility is that ''local'' scale invariant theories have their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]