Corona Theorem
   HOME





Corona Theorem
In mathematics, the corona theorem is a result about the spectrum of the bounded holomorphic functions on the open unit disc, conjectured by and proved by . The commutative Banach algebra and Hardy space ''H''∞ consists of the bounded holomorphic functions on the open unit disc ''D''. Its spectrum ''S'' (the closed maximal ideals) contains ''D'' as an open subspace because for each ''z'' in ''D'' there is a maximal ideal consisting of functions ''f'' with :''f''(''z'') = 0. The subspace ''D'' cannot make up the entire spectrum ''S'', essentially because the spectrum is a compact space and ''D'' is not. The complement of the closure of ''D'' in ''S'' was called the corona by , and the corona theorem states that the corona is empty, or in other words the open unit disc ''D'' is dense in the spectrum. A more elementary formulation is that elements ''f''1,...,''f''''n'' generate the unit ideal of ''H''∞ if and only if there is some δ>0 such that :, f_1, +\cdots+, f_n, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. Examples of Riemann surfaces include graphs of multivalued functions such as √''z'' or log(''z''), e.g. the subset of pairs with . Every Riemann surface is a surface: a two-dimensional real manifold, but it contains more structure (specifically a complex structure). Conversely, a two-dimensional real manifold can be turned into a Riemann surface (usually in several inequivalent ways) if and only if it is orientable and metrizable. Given this, the sphere and torus admit complex structures but the Möbius st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE