HOME
*



picture info

Computer Algebra System
A computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The development of the computer algebra systems in the second half of the 20th century is part of the discipline of " computer algebra" or " symbolic computation", which has spurred work in algorithms over mathematical objects such as polynomials. Computer algebra systems may be divided into two classes: specialized and general-purpose. The specialized ones are devoted to a specific part of mathematics, such as number theory, group theory, or teaching of elementary mathematics. General-purpose computer algebra systems aim to be useful to a user working in any scientific field that requires manipulation of mathematical expressions. To be useful, a general-purpose computer algebra system must include various features such as: *a user interface ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Software
Mathematical software is software used to model, analyze or calculate numeric, symbolic or geometric data. Evolution of mathematical software Numerical analysis and symbolic computation had been in most important place of the subject, but other kind of them is also growing now. A useful mathematical knowledge of such as algorism which exist before the invention of electronic computer, helped to mathematical software developing. On the other hand, by the growth of computing power (such as seeing on Moore's law), the new treatment (for example, a new kind of technique such as data assimilation which combined numerical analysis and statistics) needing conversely the progress of the mathematical science or applied mathematics. The progress of mathematical information presentation such as TeX or MathML will demand to evolution form ''formula manipulation language'' to true ''mathematics manipulation language'' (notwithstanding the problem that whether mathematical theory is inconsisten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Memory Management
Memory management is a form of resource management applied to computer memory. The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed. This is critical to any advanced computer system where more than a single process might be underway at any time. Several methods have been devised that increase the effectiveness of memory management. Virtual memory systems separate the memory addresses used by a process from actual physical addresses, allowing separation of processes and increasing the size of the virtual address space beyond the available amount of RAM using paging or swapping to secondary storage. The quality of the virtual memory manager can have an extensive effect on overall system performance. In some operating systems, e.g. OS/360 and successors, memory is managed by the operating system. In other operating systems, e.g. Unix-like operating s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Martinus Veltman
Martinus Justinus Godefriedus "Tini" Veltman (; 27 June 1931 – 4 January 2021) was a Dutch theoretical physicist. He shared the 1999 Nobel Prize in physics with his former PhD student Gerardus 't Hooft for their work on particle theory. Biography Martinus Justinus Godefriedus Veltman was born in Waalwijk, Netherlands, on 27 June 1931. His father was the head of the local primary school. Three of his father's siblings were primary school teachers. His mother's father was a contractor and also ran a café. He was the fourth child in a family with six children. He started studying mathematics and physics at Utrecht University in 1948. As a youth he had a great interest in radio electronics, which was a difficult hobby to work on because the occupying German army had confiscated most of the available radio equipment. In 1955, he became an assistant to Prof. Michels of the Van Der Waals laboratory in Amsterdam. Michels was an experimental physicist, working in high pressure physi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Artificial Intelligence
Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs. The ''Oxford English Dictionary'' of Oxford University Press defines artificial intelligence as: the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. AI applications include advanced web search engines (e.g., Google), recommendation systems (used by YouTube, Amazon and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Tesla), automated decision-making and competing at the highest level in strategic game systems (such as chess and G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computer Algebra System
A computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The development of the computer algebra systems in the second half of the 20th century is part of the discipline of " computer algebra" or " symbolic computation", which has spurred work in algorithms over mathematical objects such as polynomials. Computer algebra systems may be divided into two classes: specialized and general-purpose. The specialized ones are devoted to a specific part of mathematics, such as number theory, group theory, or teaching of elementary mathematics. General-purpose computer algebra systems aim to be useful to a user working in any scientific field that requires manipulation of mathematical expressions. To be useful, a general-purpose computer algebra system must include various features such as: *a user interface ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SageMath
SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation") is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, numerical analysis, number theory, calculus and statistics. The first version of SageMath was released on 24 February 2005 as free and open-source software under the terms of the GNU General Public License version 2, with the initial goals of creating an "open source alternative to Magma, Maple, Mathematica, and MATLAB". The originator and leader of the SageMath project, William Stein, was a mathematician at the University of Washington. SageMath uses a syntax resembling Python's, supporting procedural, functional and object-oriented constructs. Development Stein realized when designing Sage that there were many open-source mathematics software packages already written in different languages, namely C, C++, Common Lisp, Fortran and Python. Rather th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematica
Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimization, plotting functions and various types of data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other programming languages. It was conceived by Stephen Wolfram, and is developed by Wolfram Research of Champaign, Illinois. The Wolfram Language is the programming language used in ''Mathematica''. Mathematica 1.0 was released on June 23, 1988 in Champaign, Illinois and Santa Clara, California. __TOC__ Notebook interface Wolfram Mathematica (called ''Mathematica'' by some of its users) is split into two parts: the kernel and the front end. The kernel interprets expressions (Wolfram Language code) and returns result expressions, which can then be displayed by the front end. The or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maple (software)
Maple is a symbolic and numeric computing environment as well as a multi-paradigm programming language. It covers several areas of technical computing, such as symbolic mathematics, numerical analysis, data processing, visualization, and others. A toolbox, MapleSim, adds functionality for multidomain physical modeling and code generation. Maple's capacity for symbolic computing include those of a general-purpose computer algebra system. For instance, it can manipulate mathematical expressions and find symbolic solutions to certain problems, such as those arising from ordinary and partial differential equations. Maple is developed commercially by the Canadian software company Maplesoft. The name 'Maple' is a reference to the software's Canadian heritage. Overview Core functionality Users can enter mathematics in traditional mathematical notation. Custom user interfaces can also be created. There is support for numeric computations, to arbitrary precision, as well as symbol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Magma (computer Algebra System)
Magma is a computer algebra system designed to solve problems in algebra, number theory, geometry and combinatorics. It is named after the algebraic structure magma. It runs on Unix-like operating systems, as well as Windows. Introduction Magma is produced and distributed by thComputational Algebra Groupwithin the School of Mathematics and Statistics at the University of Sydney. In late 2006, the booDiscovering Mathematics with Magmawas published by Springer as volume 19 of the Algorithms and Computations in Mathematics series. The Magma system is used extensively within pure mathematics. The Computational Algebra Group maintain a list of publications that cite Magma, and as of 2010 there are about 2600 citations, mostly in pure mathematics, but also including papers from areas as diverse as economics and geophysics. History The predecessor of the Magma system was named Cayley (1982–1993), after Arthur Cayley. Magma was officially released in August 1993 (version 1.0). Vers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maxima (software)
Maxima () is a computer algebra system (CAS) based on a 1982 version of Macsyma. It is written in Common Lisp and runs on all POSIX platforms such as macOS, Unix, BSD, and Linux, as well as under Microsoft Windows and Android. It is free software released under the terms of the GNU General Public License (GPL). History Maxima is based on a 1982 version of Macsyma, which was developed at MIT with funding from the United States Department of Energy and other government agencies. A version of Macsyma was maintained by Bill Schelter from 1982 until his death in 2001. In 1998, Schelter obtained permission from the Department of Energy to release his version under the GPL. That version, now called Maxima, is maintained by an independent group of users and developers. Maxima does not include any of the many modifications and enhancements made to the commercial version of Macsyma during 1982–1999. Though the core functionality remains similar, code depending on these enhancements may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom (computer Algebra System)
Axiom is a free, general-purpose computer algebra system. It consists of an interpreter environment, a compiler and a library, which defines a strongly typed hierarchy. History Two computer algebra systems named Scratchpad were developed by IBM. The first one was started in 1965 by James Griesmer at the request of Ralph Gomory, and written in Fortran. The development of this software was stopped before any public release. The second Scratchpad, originally named Scratchpad II, was developed from 1977 on, at Thomas J. Watson Research Center, under the direction of Richard Dimick Jenks. The design is principally due to Richard D. Jenks (IBM Research), James H. Davenport (University of Bath), Barry M. Trager (IBM Research), David Y.Y. Yun (Southern Methodist University) and Victor S. Miller (IBM Research). Early consultants on the project were David Barton (University of California, Berkeley) and James W. Thatcher (IBM Research). Implementation included Robert Sutor (IBM Rese ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Greatest Common Divisor
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant. The similarity between the integer GCD and the polynomial GCD allows extending to univariate polynomials all the properties that may be deduced from the Euclidean algorithm and Euclidean division. Moreover, the polynomial GCD has specific properties that make it a fundamental notion in various areas of algebra. Typically, the roots of the GCD of two polynomials are the common roots of the two polynomials, and this provides information on the roots without compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]