Compression Body
   HOME
*





Compression Body
In the theory of 3-manifolds, a compression body is a kind of generalized handlebody. A compression body is either a handlebody or the result of the following construction: : Let S be a compact, closed surface (not necessarily connected). Attach 1- handles to S \times ,1/math> along S \times \. Let C be a compression body. The negative boundary of C, denoted \partial_C, is S \times \. (If C is a handlebody then \partial_- C = \emptyset.) The positive boundary of C, denoted \partial_C, is \partial C minus the negative boundary. There is a dual construction of compression bodies starting with a surface S and attaching 2-handles to S \times \. In this case \partial_C is S \times \, and \partial_C is \partial C minus the positive boundary. Compression bodies often arise when manipulating Heegaard splitting In the mathematical field of geometric topology, a Heegaard splitting () is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

3-manifold
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Introduction Definition A topological space ''X'' is a 3-manifold if it is a second-countable Hausdorff space and if every point in ''X'' has a neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Handlebody
In the mathematical field of geometric topology, a handlebody is a decomposition of a manifold into standard pieces. Handlebodies play an important role in Morse theory, cobordism theory and the surgery theory of high-dimensional manifolds. Handles are used to particularly study 3-manifolds. Handlebodies play a similar role in the study of manifolds as simplicial complexes and CW complexes play in homotopy theory, allowing one to analyze a space in terms of individual pieces and their interactions. ''n''-dimensional handlebodies If (W,\partial W) is an n-dimensional manifold with boundary, and :S^ \times D^ \subset \partial W (where S^ represents an n-sphere and D^n is an n-ball) is an embedding, the n-dimensional manifold with boundary :(W',\partial W') = ((W \cup( D^r \times D^)),(\partial W - S^ \times D^)\cup (D^r \times S^)) is said to be ''obtained from :(W,\partial W) by attaching an r-handle''. The boundary \partial W' is obtained from \partial W by surgery. As trivial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Handle (mathematics)
In mathematics, a handle decomposition of an ''m''-manifold ''M'' is a union \emptyset = M_ \subset M_0 \subset M_1 \subset M_2 \subset \dots \subset M_ \subset M_m = M where each M_i is obtained from M_ by the attaching of i-handles. A handle decomposition is to a manifold what a CW-decomposition is to a topological space—in many regards the purpose of a handle decomposition is to have a language analogous to CW-complexes, but adapted to the world of smooth manifolds. Thus an ''i''-handle is the smooth analogue of an ''i''-cell. Handle decompositions of manifolds arise naturally via Morse theory. The modification of handle structures is closely linked to Cerf theory. Motivation Consider the standard CW-decomposition of the ''n''-sphere, with one zero cell and a single ''n''-cell. From the point of view of smooth manifolds, this is a degenerate decomposition of the sphere, as there is no natural way to see the smooth structure of S^n from the eyes of this decomposition—i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heegaard Splitting
In the mathematical field of geometric topology, a Heegaard splitting () is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Definitions Let ''V'' and ''W'' be handlebodies of genus ''g'', and let ƒ be an orientation reversing homeomorphism from the boundary of ''V'' to the boundary of ''W''. By gluing ''V'' to ''W'' along ƒ we obtain the compact oriented 3-manifold : M = V \cup_f W. Every closed, orientable three-manifold may be so obtained; this follows from deep results on the triangulability of three-manifolds due to Moise. This contrasts strongly with higher-dimensional manifolds which need not admit smooth or piecewise linear structures. Assuming smoothness the existence of a Heegaard splitting also follows from the work of Smale about handle decompositions from Morse theory. The decomposition of ''M'' into two handlebodies is called a Heegaard splitting, and their common boundary ''H'' is called the Heegaard surf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elsevier
Elsevier () is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell'', the ScienceDirect collection of electronic journals, '' Trends'', the '' Current Opinion'' series, the online citation database Scopus, the SciVal tool for measuring research performance, the ClinicalKey search engine for clinicians, and the ClinicalPath evidence-based cancer care service. Elsevier's products and services also include digital tools for data management, instruction, research analytics and assessment. Elsevier is part of the RELX Group (known until 2015 as Reed Elsevier), a publicly traded company. According to RELX reports, in 2021 Elsevier published more than 600,000 articles annually in over 2,700 journals; as of 2018 its archives contained over 17 million documents and 40,000 e-books, with over one billion annual downloads. Researchers have criticized Elsevier for its high profit marg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




3-manifolds
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Introduction Definition A topological space ''X'' is a 3-manifold if it is a second-countable Hausdorff space and if every point in ''X'' has a neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions gre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]