Commensurability (mathematics)
   HOME
*





Commensurability (mathematics)
In mathematics, two non-zero real numbers ''a'' and ''b'' are said to be ''commensurable'' if their ratio ' is a rational number; otherwise ''a'' and ''b'' are called ''incommensurable''. (Recall that a rational number is one that is equivalent to the ratio of two integers.) There is a more general notion of commensurability in group theory. For example, the numbers 3 and 2 are commensurable because their ratio, , is a rational number. The numbers \sqrt and 2\sqrt are also commensurable because their ratio, \frac=\frac, is a rational number. However, the numbers \sqrt and 2 are incommensurable because their ratio, \frac, is an irrational number. More generally, it is immediate from the definition that if ''a'' and ''b'' are any two non-zero rational numbers, then ''a'' and ''b'' are commensurable; it is also immediate that if ''a'' is any irrational number and ''b'' is any non-zero rational number, then ''a'' and ''b'' are incommensurable. On the other hand, if both ''a'' and ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Path-connected
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Isomorphism
In abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished. Definition and notation Given two groups (G, *) and (H, \odot), a ''group isomorphism'' from (G, *) to (H, \odot) is a bijective group homomorphism from G to H. Spelled out, this means that a group isomorphism is a bijective function f : G \to H such that for all u and v in G it holds that f(u * v) = f(u) \odot f(v). The two groups (G, *) and (H, \odot) are isomorphic if there exists an isomorphism from one to the other. This is written (G, *) \cong (H, \odot). Often shorter and simpler notations can be used. When the relevant group operations are understood, they are omitted and one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generating Set Of A Group
In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses. In other words, if ''S'' is a subset of a group ''G'', then , the ''subgroup generated by S'', is the smallest subgroup of ''G'' containing every element of ''S'', which is equal to the intersection over all subgroups containing the elements of ''S''; equivalently, is the subgroup of all elements of ''G'' that can be expressed as the finite product of elements in ''S'' and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.) If ''G'' = , then we say that ''S'' ''generates'' ''G'', and the elements in ''S'' are called ''generators'' or ''group generators''. If ''S'' is the empty set, then is the trivial group , since we consider th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finite Index
In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the number of left cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''. The index is denoted , G:H, or :H/math> or (G:H). Because ''G'' is the disjoint union of the left cosets and because each left coset has the same size as ''H'', the index is related to the orders of the two groups by the formula :, G, = , G:H, , H, (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index , G:H, measures the "relative sizes" of ''G'' and ''H''. For example, let G = \Z be the group of integers under addition, and let H = 2\Z be the subgroup consisting of the even integers. Then 2\Z has two cosets in \Z, namely the set of even integers and the set of odd integers, so the index , \Z:2\Z, is 2. More generally, , \Z:n\Z, = n for any positive integer ''n''. When ''G'' is finite, the formula may be written as , G:H, = , G, /, H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersection (set Theory)
In set theory, the intersection of two sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example: \\cap\=\ \\cap\=\varnothing \Z\cap\N=\N \\cap\N=\ The intersection of more than two sets (generalized intersection) can be written as: \bigcap_^n A_i which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols. Definition The intersection of two sets A and B, denoted by A \cap B, is the set of all objects that are members of both the sets A and B. In symbols: A \cap B = \. That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B. For example: * The intersection of the sets and is . * The number 9 is in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Length
Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the International System of Units (SI) system the base unit for length is the metre. Length is commonly understood to mean the most extended dimension of a fixed object. However, this is not always the case and may depend on the position the object is in. Various terms for the length of a fixed object are used, and these include height, which is vertical length or vertical extent, and width, breadth or depth. Height is used when there is a base from which vertical measurements can be taken. Width or breadth usually refer to a shorter dimension when length is the longest one. Depth is used for the third dimension of a three dimensional object. Length is the measure of one spatial dimension, whereas area is a measure of two dimensions (length square ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]