Cohomology Of A Stack
   HOME
*





Cohomology Of A Stack
In algebraic geometry, the cohomology of a stack is a generalization of étale cohomology. In a sense, it is a theory that is coarser than the Chow group of a stack. The cohomology of a quotient stack (e.g., classifying stack) can be thought of as an algebraic counterpart of equivariant cohomology. For example, Borel's theorem states that the cohomology ring of a classifying stack In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. T ... is a polynomial ring. See also * l-adic sheaf * smooth topology References * {{algebraic-geometry-stub Algebraic geometry Cohomology theories ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Cohomology
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type. History Étale cohomology was introduced by , using some suggestions by Jean-Pierre Serre, and was motivated by the attempt to construct a Weil cohomology theory in order to prove the Weil conjectures. The foundations were soon after worked out by Grothendieck together with Michael Artin, and published as and SGA 4. Grothendieck used étale cohomology to prove some of the Weil conjectures (Bernard Dwork had already managed to prove the rationality part of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chow Group Of A Stack
In algebraic geometry, the Chow group of a stack is a generalization of the Chow group of a variety or scheme to stacks. For a quotient stack X = /G/math>, the Chow group of ''X'' is the same as the ''G''-equivariant Chow group of ''Y''. A key difference from the theory of Chow groups of a variety is that a cycle is allowed to carry non-trivial automorphisms and consequently intersection-theoretic operations must take this into account. For example, the degree of a 0-cycle on a stack need not be an integer but is a rational number (due to non-trivial stabilizers). Definitions develops the basic theory (mostly over Q) for the Chow group of a (separated) Deligne–Mumford stack. There, the Chow group is defined exactly as in the classical case: it is the free abelian group generated by integral closed substacks modulo rational equivalence. If a stack ''X'' can be written as the quotient stack X = /G/math> for some quasi-projective variety ''Y'' with a linearized action of a lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Stack
In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks. Definition A quotient stack is defined as follows. Let ''G'' be an affine smooth group scheme over a scheme ''S'' and ''X'' an ''S''-scheme on which ''G'' acts. Let the quotient stack /G/math> be the category over the category of ''S''-schemes: *an object over ''T'' is a principal ''G''-bundle P\to T together with equivariant map P\to X; *an arrow from P\to T to P'\to T' is a bundle map (i.e., forms a commutative diagram) that is compatible with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Classifying Stack
In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks. Definition A quotient stack is defined as follows. Let ''G'' be an affine smooth group scheme over a scheme ''S'' and ''X'' an ''S''-scheme on which ''G'' acts. Let the quotient stack /G/math> be the category over the category of ''S''-schemes: *an object over ''T'' is a principal ''G''-bundle P\to T together with equivariant map P\to X; *an arrow from P\to T to P'\to T' is a bundle map (i.e., forms a commutative diagram) that is compatible with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Cohomology
In mathematics, equivariant cohomology (or ''Borel cohomology'') is a cohomology theory from algebraic topology which applies to topological spaces with a ''group action''. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space X with action of a topological group G is defined as the ordinary cohomology ring with coefficient ring \Lambda of the homotopy quotient EG \times_G X: :H_G^*(X; \Lambda) = H^*(EG \times_G X; \Lambda). If G is the trivial group, this is the ordinary cohomology ring of X, whereas if X is contractible, it reduces to the cohomology ring of the classifying space BG (that is, the group cohomology of G when ''G'' is finite.) If ''G'' acts freely on ''X'', then the canonical map EG \times_G X \to X/G is a homotopy equivalence and so one gets: H_G^*(X; \Lambda) = H^*(X/G; \Lambda). Definitions It is also possible to define the equivariant cohomology H_G^*(X;A) of X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel's Theorem
In topology, a branch of mathematics, Borel's theorem, due to , says the cohomology ring of a classifying space or a classifying stack is a polynomial ring. See also *Atiyah–Bott formula In algebraic geometry, the Atiyah–Bott formula says the cohomology ring :\operatorname^*(\operatorname_G(X), \mathbb_l) of the moduli stack of principal bundles is a free graded-commutative algebra on certain homogeneous generators. The origin ... Notes References * * {{topology-stub Theorems in algebraic topology Theorems in algebraic geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


L-adic Sheaf
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a discret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Smooth Topology
In algebraic geometry, the smooth topology is a certain Grothendieck topology, which is finer than étale topology. Its main use is to define the cohomology of an algebraic stack with coefficients in, say, the étale sheaf \mathbb_l. To understand the problem that motivates the notion, consider the classifying stack In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. Th ... B\mathbb_m over \operatorname \mathbf_q. Then B\mathbb_m = \operatorname \mathbf_q in the étale topology; i.e., just a point. However, we expect the "correct" cohomology ring of B\mathbb_m to be more like that of \mathbb P^\infty as the ring should classify line bundles. Thus, the cohomology of B\mathbb_m should be defined using smooth topology for formulae like Behrend's fixed point formula to hold. Notes Referenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, ''The Daily Princetonian'', and later added book publishing to it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]