Cocommutative
   HOME
*



picture info

Cocommutative
In mathematics, coalgebras or cogebras are structures that are dual (in the category-theoretic sense of reversing arrows) to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by (vector space) duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions ( see below). Coalgebras occur naturally in a number of contexts (for example, representation theory, universal enveloping algebras and group schemes). There are also F-coalgebras, with important applications in computer science. Informal discussion One frequently recurring example of coalgebras occurs in representation theory, and in particular, in the representation theory of the rotation group. A primary task, of practical use in physics, is to obtain combinations of systems with different states of angul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, frisbees, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it. The three-dimensional angular momentum for a point particle is classically represented as a pseudovector , the cross product of the particle's position vector (relative to some origin) and its momentum vector; the latter is in Newtonian mechanics. Unlike linear momentum, angular m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product Of Modules
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. It allows the study of bilinear or multilinear operations via linear operations. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multilinear Map
In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function :f\colon V_1 \times \cdots \times V_n \to W\text where V_1,\ldots,V_n and W are vector spaces (or modules over a commutative ring), with the following property: for each i, if all of the variables but v_i are held constant, then f(v_1, \ldots, v_i, \ldots, v_n) is a linear function of v_i. A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, a multilinear map of ''k'' variables is called a ''k''-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form. Multilinear maps and multilinear forms are fundamental objects of study in multilinear algebra. If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating ''k''-linear maps. The latter coincide if the underlying ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Littlewood–Richardson Rule
In mathematics, the Littlewood–Richardson rule is a combinatorial description of the coefficients that arise when decomposing a product of two Schur functions as a linear combination of other Schur functions. These coefficients are natural numbers, which the Littlewood–Richardson rule describes as counting certain skew tableaux. They occur in many other mathematical contexts, for instance as multiplicity in the decomposition of tensor products of finite-dimensional representations of general linear groups, or in the decomposition of certain induced representations in the representation theory of the symmetric group, or in the area of algebraic combinatorics dealing with Young tableaux and symmetric polynomials. Littlewood–Richardson coefficients depend on three partitions, say \lambda,\mu,\nu, of which \lambda and \mu describe the Schur functions being multiplied, and \nu gives the Schur function of which this is the coefficient in the linear combination; in other words they ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shuffle Product
In mathematics, a shuffle algebra is a Hopf algebra with a basis corresponding to words on some set, whose product is given by the shuffle product ''X'' ⧢ ''Y'' of two words ''X'', ''Y'': the sum of all ways of interlacing them. The interlacing is given by the riffle shuffle permutation. The shuffle algebra on a finite set is the graded dual of the universal enveloping algebra of the free Lie algebra on the set. Over the rational numbers, the shuffle algebra is isomorphic to the polynomial algebra in the Lyndon words. The shuffle product occurs in generic settings in non-commutative algebras; this is because it is able to preserve the relative order of factors being multiplied together - the riffle shuffle permutation. This can be held in contrast to the divided power structure, which becomes appropriate when factors are commutative. Shuffle product The shuffle product of words of lengths ''m'' and ''n'' is a sum over the ways of interleaving the two words, as shown in the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Algebra
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. Definition For ''R'' a commutative ring, the free (associative, unital) algebra on ''n'' indeterminates is the free ''R''-module with a basis consisting of all words over the alphabet (including the empty word, which is the unit of the free algebra). This ''R''-module becomes an ''R''-algebra by defining a multiplication as follows: the product of two basis elements is the concatenation of the corresponding words: :\left(X_X_ \cdots X_\right) \cdot \left(X_X_ \cdots X_\right) = X_X_ \cdots X_X_X_ \cdots X_, and the product of two arbitrary ''R''-module elements is thus uniquely determined (because the multiplication in an ''R''-algebra must be ''R''-bilinear). This ''R''- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Object
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set ''A'' can be thought of as being a "generic" algebraic structure over ''A'': the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of category theory, although this is in yet more abstract terms. Definition Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function between vector spaces is entirely determined by its values on a basis of the vector space The following definition translates this to any category. A concrete category is a category that is equipped with a faithf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lift (mathematics)
In category theory, a branch of mathematics, given a morphism ''f'': ''X'' → ''Y'' and a morphism ''g'': ''Z'' → ''Y'', a lift or lifting of ''f'' to ''Z'' is a morphism ''h'': ''X'' → ''Z'' such that . We say that ''f'' factors through ''h''. A basic example in topology is lifting a path in one topological space to a path in a covering space. For example, consider mapping opposite points on a sphere to the same point, a continuous map from the sphere covering the projective plane. A path in the projective plane is a continuous map from the unit interval ,1 We can lift such a path to the sphere by choosing one of the two sphere points mapping to the first point on the path, then maintain continuity. In this case, each of the two starting points forces a unique path on the sphere, the lift of the path in the projective plane. Thus in the category of topological spaces with continuous maps as morphisms, we have :\begin f\colon\, & ,1\to \mathbb^2 &&\ \text \\ g\colon\, &S^2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Representation
In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defining module of a classical Lie group is a fundamental representation. Any finite-dimensional irreducible representation of a semisimple Lie group or Lie algebra can be constructed from the fundamental representations by a procedure due to Élie Cartan. Thus in a certain sense, the fundamental representations are the elementary building blocks for arbitrary finite-dimensional representations. Examples * In the case of the general linear group, all fundamental representations are exterior products of the defining module. * In the case of the special unitary group SU(''n''), the ''n'' − 1 fundamental representations are the wedge products \operatorname^k\ ^n consisting of the alternating tensors, for ''k'' = 1,&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing ''V'', in the sense of the corresponding universal property (see below). The tensor algebra is important because many other algebras arise as quotient algebras of ''T''(''V''). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bialgebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by giving an antipode to create a Hopf algebra structure. ''Note'': In this article, all a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]