Claw-free
   HOME
*





Claw-free
In the Mathematics, mathematical and computer science field of cryptography, a group of three numbers (''x'',''y'',''z'') is said to be a claw of two permutations ''f''0 and ''f''1 if :''f''0(''x'') = ''f''1(''y'') = ''z''. A pair of permutations ''f''0 and ''f''1 are said to be claw-free if there is no efficient algorithm for computing a claw. The terminology ''claw free'' was introduced by Shafi Goldwasser, Goldwasser, Silvio Micali, Micali, and Ron Rivest, Rivest in their 1984 paper, "A Paradoxical Solution to the Signature Problem" (and later in a more complete journal paper), where they showed that the existence of claw-free pairs of trapdoor permutations implies the existence of digital signature schemes secure against adaptive chosen-message attack. This construction was later superseded by the construction of digital signatures from any one-way trapdoor permutation. The existence of trapdoor permutations does not by itself imply claw-free permutations exist; however, it ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shafi Goldwasser
en, Shafrira Goldwasser , name = Shafi Goldwasser , image = Shafi Goldwasser.JPG , caption = Shafi Goldwasser in 2010 , birth_place = New York City, New York, U.S. , birth_date = , death_date = , death_place = , nationality = Israeli American , field = Computer science, cryptography , work_institution = , alma_mater = , doctoral_advisor = Manuel Blum , thesis_title = Probabilistic Encryption: Theory and Applications , thesis_url = http://search.proquest.com/docview/303337869 , thesis_year = 1984 , doctoral_students = , known_for = , prizes = , website = Shafrira Goldwasser ( he, שפרירה גולדווסר; born 1959) is an Israeli-American computer scientist and winner of the Turing Award in 2012. She is the RSA Professor of Electrical Engineering and Computer Science at MIT, a professor of mathematical sciences at th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Silvio Micali
Silvio Micali (born October 13, 1954) is an Italian computer scientist, professor at the Massachusetts Institute of Technology and the founder of Algorand. Micali's research centers on cryptography and information security. In 2012, he received the Turing Award for his work in cryptography. Personal life Micali graduated in mathematics at La Sapienza University of Rome in 1978 and earned a PhD degree in computer science from the University of California, Berkeley in 1982; for research supervised by Manuel Blum. Micali has been on the faculty at MIT, Electrical Engineering and Computer Science Department, since 1983. His research interests are cryptography, zero knowledge, pseudorandom generation, secure protocols, and mechanism design. Career Micali is best known for some of his fundamental early work on public-key cryptosystems, pseudorandom functions, digital signatures, oblivious transfer, secure multiparty computation, and is one of the co-inventors of zero-knowledge proof ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ron Rivest
Ronald Linn Rivest (; born May 6, 1947) is a cryptographer and an Institute Professor at MIT. He is a member of MIT's Department of Electrical Engineering and Computer Science (EECS) and a member of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL). His work has spanned the fields of algorithms and combinatorics, cryptography, machine learning, and election integrity. Rivest is one of the inventors of the RSA algorithm (along with Adi Shamir and Len Adleman). He is the inventor of the symmetric key encryption algorithms RC2, RC4, RC5, and co-inventor of RC6. The "RC" stands for "Rivest Cipher", or alternatively, "Ron's Code". (RC3 was broken at RSA Security during development; similarly, RC1 was never published.) He also authored the MD2, MD4, MD5 and MD6 cryptographic hash functions. Education Rivest earned a Bachelor's degree in Mathematics from Yale University in 1969, and a Ph.D. degree in Computer Science from Stanford University in 1974 for rese ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adaptive Chosen-message Attack
A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created by a known sender (authenticity), and that the message was not altered in transit (integrity). Digital signatures are a standard element of most cryptographic protocol suites, and are commonly used for software distribution, financial transactions, contract management software, and in other cases where it is important to detect forgery or tampering. Digital signatures are often used to implement electronic signatures, which includes any electronic data that carries the intent of a signature, but not all electronic signatures use digital signatures.

[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trapdoor Permutation
In theoretical computer science and cryptography, a trapdoor function is a function that is easy to compute in one direction, yet difficult to compute in the opposite direction (finding its inverse) without special information, called the "trapdoor". Trapdoor functions are a special case of one-way functions and are widely used in public-key cryptography. In mathematical terms, if ''f'' is a trapdoor function, then there exists some secret information ''t'', such that given ''f''(''x'') and ''t'', it is easy to compute ''x''. Consider a padlock and its key. It is trivial to change the padlock from open to closed without using the key, by pushing the shackle into the lock mechanism. Opening the padlock easily, however, requires the key to be used. Here the key ''t'' is the trapdoor and the padlock is the trapdoor function. An example of a simple mathematical trapdoor is "6895601 is the product of two prime numbers. What are those numbers?" A typical " brute-force" solution wou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ivan Damgård
Ivan Bjerre Damgård (born 1956) is a Danish cryptographer and currently a professor at the Department of Computer Science, Aarhus University, Denmark. Academic background In 1983, he obtained a master's degree in mathematics (with minors in music and computer science) at Aarhus University. He began his PhD studies in 1985 at the same university, and was for a period a guest researcher at CWI in Amsterdam in 1987. He earned his PhD degree in May, 1988, with the thesis ''Ubetinget beskyttelse i kryptografiske protokoller'' (Unconditional protection in cryptographic protocols) and has been employed at Aarhus University ever since. Damgård became full professor in 2005. Research Damgård co-invented the Merkle–Damgård construction, which is used in influential cryptographic hash functions such as SHA-2, SHA-1 and MD5. He discovered the structure independently of Ralph Merkle and published it in 1989. Ivan Damgård is one of the founders of the Cryptomathic Cryptomath ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cryptographic Hash Function
A cryptographic hash function (CHF) is a hash algorithm (a map of an arbitrary binary string to a binary string with fixed size of n bits) that has special properties desirable for cryptography: * the probability of a particular n-bit output result (hash value) for a random input string ("message") is 2^ (like for any good hash), so the hash value can be used as a representative of the message; * finding an input string that matches a given hash value (a ''pre-image'') is unfeasible, unless the value is selected from a known pre-calculated dictionary (" rainbow table"). The ''resistance'' to such search is quantified as security strength, a cryptographic hash with n bits of hash value is expected to have a ''preimage resistance'' strength of n bits. A ''second preimage'' resistance strength, with the same expectations, refers to a similar problem of finding a second message that matches the given hash value when one message is already known; * finding any pair of different messa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hash Collision
In computer science, a hash collision or hash clash is when two pieces of data in a hash table share the same hash value. The hash value in this case is derived from a hash function which takes a data input and returns a fixed length of bits. Although hash algorithms have been created with the intent of being collision resistant, they can still sometimes map different data to the same hash (by virtue of the pigeonhole principle). Malicious users can take advantage of this to mimic, access, or alter data. Due to the possible negative applications of hash collisions in data management and computer security (in particular, cryptographic hash functions), collision avoidance has become an important topic in computer security. Background Hash collisions can be unavoidable depending on the number of objects in a set and whether or not the bit string they are mapped to is long enough in length. When there is a set of ''n'' objects, if ''n'' is greater than , ''R'', , which in this ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Collision Resistance
In cryptography, collision resistance is a property of cryptographic hash functions: a hash function ''H'' is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs ''a'' and ''b'' where ''a'' ≠ ''b'' but ''H''(''a'') = ''H''(''b''). Goldwasser, S. and Bellare, M.br>"Lecture Notes on Cryptography" Summer course on cryptography, MIT, 1996-2001 The pigeonhole principle means that any hash function with more inputs than outputs will necessarily have such collisions; the harder they are to find, the more cryptographically secure the hash function is. The "birthday paradox" places an upper bound on collision resistance: if a hash function produces ''N'' bits of output, an attacker who computes only 2''N''/2 (or \scriptstyle \sqrt) hash operations on random input is likely to find two matching outputs. If there is an easier method than this brute-force attack, it is typically considered a flaw in the hash function.Pass, R"Lecture 21: Col ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]