Classification Theorem
   HOME
*





Classification Theorem
In mathematics, a classification theorem answers the classification problem "What are the objects of a given type, up to some equivalence?". It gives a non-redundant enumeration: each object is equivalent to exactly one class. A few issues related to classification are the following. *The equivalence problem is "given two objects, determine if they are equivalent". *A complete set of invariants, together with which invariants are solves the classification problem, and is often a step in solving it. *A (together with which invariants are realizable) solves both the classification problem and the equivalence problem. * A canonical form solves the classification problem, and is more data: it not only classifies every class, but provides a distinguished (canonical) element of each class. There exist many classification theorems in mathematics, as described below. Geometry * Classification of Euclidean plane isometries * Classification theorems of surfaces ** Classification o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank 3 Permutation Group
Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * Hierarchy of the Catholic Church * Military rank * Police ranks of the United States * Ranking member, S politicsthe most senior member of a committee from the minority party, and thus second-most senior member of a committee * Imperial, royal and noble ranks Level or position in society *Social class *Social position *Social status Places * Rank, Iran, a village * Rank, Nepal, a village development committee People * Rank (surname), a list of people with the name Arts, entertainment, and media Music * ''Rank'' (album), a live album by the Smiths * "Rank", a song by Artwork from '' A Bugged Out Mix'' Other arts, entertainment, and media * Rank (chess), a row of the chessboard * ''Rank'' (film), a short film directed by David Yates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classification Of Fatou Components
In mathematics, Fatou components are components of the Fatou set. They were named after Pierre Fatou. Rational case If f is a rational function :f = \frac defined in the extended complex plane, and if it is a nonlinear function (degree > 1) : d(f) = \max(\deg(P),\, \deg(Q))\geq 2, then for a periodic component U of the Fatou set, exactly one of the following holds: # U contains an attracting periodic point # U is parabolic # U is a Siegel disc: a simply connected Fatou component on which ''f''(''z'') is analytically conjugate to a Euclidean rotation of the unit disc onto itself by an irrational rotation angle. # U is a Herman ring: a double connected Fatou component (an annulus) on which ''f''(''z'') is analytically conjugate to a Euclidean rotation of a round annulus, again by an irrational rotation angle. File:Julia-set_N_z3-1.png, Julia set (white) and Fatou set (dark red/green/blue) for f: z\mapsto z-\frac(z) with g: z \mapsto z^3-1 in the complex plane. Basilica Juli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classification Of Discontinuities
Continuous functions are of utmost importance in mathematics, functions and applications. However, not all functions are continuous. If a function is not continuous at a point in its domain, one says that it has a discontinuity there. The set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function. This article describes the classification of discontinuities in the simplest case of functions of a single real variable taking real values. The oscillation of a function at a point quantifies these discontinuities as follows: * in a removable discontinuity, the distance that the value of the function is off by is the oscillation; * in a jump discontinuity, the size of the jump is the oscillation (assuming that the value ''at'' the point lies between these limits of the two sides); * in an essential discontinuity, oscillation measures the failure of a limit to exist; the limit is constant. A special case is if the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sylvester's Law Of Inertia
Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of basis. Namely, if ''A'' is the symmetric matrix that defines the quadratic form, and ''S'' is any invertible matrix such that ''D'' = ''SAS''T is diagonal, then the number of negative elements in the diagonal of ''D'' is always the same, for all such ''S''; and the same goes for the number of positive elements. This property is named after James Joseph Sylvester who published its proof in 1852. Statement Let ''A'' be a symmetric square matrix of order ''n'' with real entries. Any non-singular matrix ''S'' of the same size is said to transform ''A'' into another symmetric matrix , also of order ''n'', where ''S''T is the transpose of ''S''. It is also said that matrices ''A'' and ''B'' are congruent. If ''A'' is the coefficient matrix of some quadratic form of R''n'', then ''B'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jordan Normal Form
In linear algebra, a Jordan normal form, also known as a Jordan canonical form (JCF), is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis. Such a matrix has each non-zero off-diagonal entry equal to 1, immediately above the main diagonal (on the superdiagonal), and with identical diagonal entries to the left and below them. Let ''V'' be a vector space over a field ''K''. Then a basis with respect to which the matrix has the required form exists if and only if all eigenvalues of the matrix lie in ''K'', or equivalently if the characteristic polynomial of the operator splits into linear factors over ''K''. This condition is always satisfied if ''K'' is algebraically closed (for instance, if it is the field of complex numbers). The diagonal entries of the normal form are the eigenvalues (of the operator), and the number of times each eigenvalue occurs is call ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Structure Theorem For Finitely Generated Modules Over A Principal Ideal Domain
In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields. Statement When a vector space over a field ''F'' has a finite generating set, then one may extract from it a basis consisting of a finite number ''n'' of vectors, and the space is therefore isomorphic to ''F''''n''. The corresponding statement with the ''F'' generalized to a principal ideal domain ''R'' is no longer true, since a basis for a finitely generated module over ''R'' might not exist. However such a module is still isomorphic to a quotient of some module ''Rn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rank–nullity Theorem
The rank–nullity theorem is a theorem in linear algebra, which asserts that the dimension of the domain of a linear map is the sum of its rank (the dimension of its image) and its ''nullity'' (the dimension of its kernel). p. 70, §2.1, Theorem 2.3 Stating the theorem Let T : V \to W be a linear transformation between two vector spaces where T's domain V is finite dimensional. Then \operatorname(T) ~+~ \operatorname(T) ~=~ \dim V, where \operatorname(T) ~:=~ \dim(\operatorname(T)) \qquad \text \qquad \operatorname(T) ~:=~ \dim(\operatorname (T)). In other words, \dim (\operatorname T) + \dim (\ker T) = \dim (\operatorname T). This theorem can be refined via the splitting lemma to be a statement about an isomorphism of spaces, not just dimensions. Explicitly, since induces an isomorphism from V / \operatorname (T) to \operatorname (T), the existence of a basis for that extends any given basis of \operatorname(T) implies, via the splitting lemma, that \operatorname(T) \op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite-dimensional Vector Space
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is finite, and if its dimension is infinite. The dimension of the vector space V over the field F can be written as \dim_F(V) or as : F read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written. Examples The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any field F. The complex numbers \Complex are both a real and complex vector space; we have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Langlands Classification
In mathematics, the Langlands classification is a description of the irreducible representations of a reductive Lie group ''G'', suggested by Robert Langlands (1973). There are two slightly different versions of the Langlands classification. One of these describes the irreducible admissible (''g'',''K'')-modules, for ''g'' a Lie algebra of a reductive Lie group ''G'', with maximal compact subgroup ''K'', in terms of tempered representations of smaller groups. The tempered representations were in turn classified by Anthony Knapp and Gregg Zuckerman. The other version of the Langlands classification divides the irreducible representations into L-packets, and classifies the L-packets in terms of certain homomorphisms of the Weil group of R or C into the Langlands dual group. Notation *''g'' is the Lie algebra of a real reductive Lie group ''G'' in the Harish-Chandra class. *''K'' is a maximal compact subgroup of ''G'', with Lie algebra ''k''. *ω is a Cartan involution of ''G'', fixin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ADE Classification
In mathematics, the ADE classification (originally ''A-D-E'' classifications) is a situation where certain kinds of objects are in correspondence with simply laced Dynkin diagrams. The question of giving a common origin to these classifications, rather than a posteriori verification of a parallelism, was posed in . The complete list of simply laced Dynkin diagrams comprises :A_n, \, D_n, \, E_6, \, E_7, \, E_8. Here "simply laced" means that there are no multiple edges, which corresponds to all simple roots in the root system forming angles of \pi/2 = 90^\circ (no edge between the vertices) or 2\pi/3 = 120^\circ (single edge between the vertices). These are two of the four families of Dynkin diagrams (omitting B_n and C_n), and three of the five exceptional Dynkin diagrams (omitting F_4 and G_2). This list is non-redundant if one takes n \geq 4 for D_n. If one extends the families to include redundant terms, one obtains the exceptional isomorphisms :D_3 \cong A_3, E_4 \cong A_4 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bianchi Classification
In mathematics, the Bianchi classification provides a list of all real 3-dimensional Lie algebras (up to isomorphism). The classification contains 11 classes, 9 of which contain a single Lie algebra and two of which contain a continuum-sized family of Lie algebras. (Sometimes two of the groups are included in the infinite families, giving 9 instead of 11 classes.) The classification is important in geometry and physics, because the associated Lie groups serve as symmetry groups of 3-dimensional Riemannian manifolds. It is named for Luigi Bianchi, who worked it out in 1898. The term "Bianchi classification" is also used for similar classifications in other dimensions and for classifications of complex Lie algebras. Classification in dimension less than 3 * Dimension 0: The only Lie algebra is the abelian Lie algebra R0. * Dimension 1: The only Lie algebra is the abelian Lie algebra R1, with outer automorphism group the multiplicative group of non-zero real numbers. * Dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]