Cube (arithmetic)
In arithmetic and algebra, the cube of a number is its third power, that is, the result of multiplying three instances of together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example or . The cube is also the number multiplied by its square: :. The ''cube function'' is the function (often denoted ) that maps a number to its cube. It is an odd function, as :. The volume of a geometric cube is the cube of its side length, giving rise to the name. The inverse operation that consists of finding a number whose cube is is called extracting the cube root of . It determines the side of the cube of a given volume. It is also raised to the one-third power. The graph of the cube function is known as the cubic parabola. Because the cube function is an odd function, this curve has a center of symmetry at the origin, but no axis of symmetry. In integers A cube number, or a perfect cube, or sometimes just a cube, is a number which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
3 (number)
3 (three) is a number, numeral and digit. It is the natural number following 2 and preceding 4, and is the smallest odd prime number and the only prime preceding a square number. It has religious or cultural significance in many societies. Evolution of the Arabic digit The use of three lines to denote the number 3 occurred in many writing systems, including some (like Roman and Chinese numerals) that are still in use. That was also the original representation of 3 in the Brahmic (Indian) numerical notation, its earliest forms aligned vertically. However, during the Gupta Empire the sign was modified by the addition of a curve on each line. The Nāgarī script rotated the lines clockwise, so they appeared horizontally, and ended each line with a short downward stroke on the right. In cursive script, the three strokes were eventually connected to form a glyph resembling a with an additional stroke at the bottom: ३. The Indian digits spread to the Caliphate in the 9th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Odd Number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sum Of Cubes2
Sum most commonly means the total of two or more numbers added together; see addition. Sum can also refer to: Mathematics * Sum (category theory), the generic concept of summation in mathematics * Sum, the result of summation, the addition of a sequence of numbers * 3SUM, a term from computational complexity theory * Band sum, a way of connecting mathematical knots * Connected sum, a way of gluing manifolds * Digit sum, in number theory * Direct sum, a combination of algebraic objects ** Direct sum of groups ** Direct sum of modules ** Direct sum of permutations ** Direct sum of topological groups * Einstein summation, a way of contracting tensor indices * Empty sum, a sum with no terms * Indefinite sum, the inverse of a finite difference * Kronecker sum, an operation considered a kind of addition for matrices * Matrix addition, in linear algebra * Minkowski addition, a sum of two subsets of a vector space * Power sum symmetric polynomial, in commutative algebra * Prefi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangular Numbers
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in the triangular arrangement with dots on each side, and is equal to the sum of the natural numbers from 1 to . The sequence of triangular numbers, starting with the 0th triangular number, is (This sequence is included in the On-Line Encyclopedia of Integer Sequences .) Formula The triangular numbers are given by the following explicit formulas: T_n= \sum_^n k = 1+2+3+ \dotsb +n = \frac = , where \textstyle is a binomial coefficient. It represents the number of distinct pairs that can be selected from objects, and it is read aloud as " plus one choose two". The first equation can be illustrated using a visual proof. For every triangular number T_n, imagine a "half-square" arrangement of objects corresponding to the triangular numb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nicomachus Theorem 3D
Nicomachus of Gerasa ( grc-gre, Νικόμαχος; c. 60 – c. 120 AD) was an important ancient mathematician and music theorist, best known for his works ''Introduction to Arithmetic'' and ''Manual of Harmonics'' in Greek. He was born in Gerasa, in the Roman province of Syria (now Jerash, Jordan). He was a Neopythagorean, who wrote about the mystical properties of numbers.Eric Temple Bell (1940), ''The development of mathematics'', page 83.Frank J. Swetz (2013), ''The European Mathematical Awakening'', page 17, Courier Life Little is known about the life of Nicomachus except that he was a Pythagorean who came from Gerasa.} Historians consider him a Neopythagorean based on his tendency to view numbers as having mystical properties. The age in which he lived (c. 100 AD) is only known because he mentions Thrasyllus in his ''Manual of Harmonics'', and because his ''Introduction to Arithmetic'' was apparently translated into Latin in the mid 2nd century by Apuleius.Henrietta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle Number
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in the triangular arrangement with dots on each side, and is equal to the sum of the natural numbers from 1 to . The sequence of triangular numbers, starting with the 0th triangular number, is (This sequence is included in the On-Line Encyclopedia of Integer Sequences .) Formula The triangular numbers are given by the following explicit formulas: T_n= \sum_^n k = 1+2+3+ \dotsb +n = \frac = , where \textstyle is a binomial coefficient. It represents the number of distinct pairs that can be selected from objects, and it is read aloud as " plus one choose two". The first equation can be illustrated using a visual proof. For every triangular number T_n, imagine a "half-square" arrangement of objects corresponding to the triangular numb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eisenstein Integers
In mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form :z = a + b\omega , where and are integers and :\omega = \frac = e^ is a primitive (hence non-real) cube root of unity. The Eisenstein integers form a triangular lattice in the complex plane, in contrast with the Gaussian integers, which form a square lattice in the complex plane. The Eisenstein integers are a countably infinite set. Properties The Eisenstein integers form a commutative ring of algebraic integers in the algebraic number field \mathbb(\omega) — the third cyclotomic field. To see that the Eisenstein integers are algebraic integers note that each is a root of the monic polynomial :z^2 - (2a - b)\;\!z + \left(a^2 - ab + b^2\right)~. In particular, satisfies the equation :\omega^2 + \omega + 1 = 0~. The product of two Eisenstein integers and is given explicitly by :(a + b\;\! ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009. Sloane is chairman of the OEIS Foundation. OEIS records information on integer sequences of interest to both professional and amateur mathematicians, and is widely cited. , it contains over 350,000 sequences, making it the largest database of its kind. Each entry contains the leading terms of the sequence, keywords, mathematical motivations, literature links, and more, including the option to generate a graph or play a musical representation of the sequence. The database is searchable by keyword, by subsequence, or by any of 16 fields. History Neil Sloane started collecting integer sequences as a graduate student in 1965 to support his work in combinatorics. The database was at first stored on punched cards. H ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ''Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modulo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digital Root
The digital root (also repeated digital sum) of a natural number in a given radix is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached. For example, in base 10, the digital root of the number 12345 is 6 because the sum of the digits in the number is 1 + 2 + 3 + 4 + 5 = 15, then the addition process is repeated again for the resulting number 15, so that the sum of 1 + 5 equals 6, which is the digital root of that number. In base 10, this is equivalent to taking the remainder upon division by 9 (except when the digital root is 9, where the remainder upon division by 9 will be 0), which allows it to be used as a divisibility rule. Formal definition Let n be a natural number. For base b > 1, we define the digit sum F_ : \mathbb \rightarrow \mathbb to be the following: :F_(n) = \sum_^ d_i where k = \lfloor \log_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Even And Odd Numbers
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |