HOME
*





Coset Enumeration
In mathematics, coset enumeration is the problem of counting the cosets of a subgroup ''H'' of a group ''G'' given in terms of a presentation. As a by-product, one obtains a permutation representation for ''G'' on the cosets of ''H''. If ''H'' has a known finite order, coset enumeration gives the order of ''G'' as well. For small groups it is sometimes possible to perform a coset enumeration by hand. However, for large groups it is time-consuming and error-prone, so it is usually carried out by computer. Coset enumeration is usually considered to be one of the fundamental problems in computational group theory. The original algorithm for coset enumeration was invented by John Arthur Todd and H. S. M. Coxeter. Various improvements to the original Todd–Coxeter algorithm have been suggested, notably the classical strategies of V. Felsch and HLT (Haselgrove, Leech and Trotter). A practical implementation of these strategies with refinements is available at the ACE website. The K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coset
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) have the same number of elements (cardinality) as does . Furthermore, itself is both a left coset and a right coset. The number of left cosets of in is equal to the number of right cosets of in . This common value is called the index of in and is usually denoted by . Cosets are a basic tool in the study of groups; for example, they play a central role in Lagrange's theorem that states that for any finite group , the number of elements of every subgroup of divides the number of elements of . Cosets of a particular type of subgroup (a normal subgroup) can be used as the elements of another group called a quotient group or factor group. Cosets also appear in other areas of mathematics such as vector spaces and error-correcting codes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Presentation Of A Group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Representation
In mathematics, the term permutation representation of a (typically finite) group G can refer to either of two closely related notions: a representation of G as a group of permutations, or as a group of permutation matrices. The term also refers to the combination of the two. Abstract permutation representation A permutation representation of a group G on a set X is a homomorphism from G to the symmetric group of X: : \rho\colon G \to \operatorname(X). The image \rho(G)\sub \operatorname(X) is a permutation group and the elements of G are represented as permutations of X. A permutation representation is equivalent to an action of G on the set X: :G\times X \to X. See the article on group action for further details. Linear permutation representation If G is a permutation group of degree n, then the permutation representation of G is the linear representation of G :\rho\colon G\to \operatorname_n(K) which maps g\in G to the corresponding permutation matrix (here K is an arbitrar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer
A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as Computer program, programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the Computer hardware, hardware, operating system (main software), and peripheral equipment needed and used for full operation. This term may also refer to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of Programmable logic controller, industrial and Consumer electronics, consumer products use computers as control systems. Simple special-purpose devices like microwave ovens and remote controls are included, as are factory devices like industrial robots and computer-aided design, as well as general-purpose devi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Group Theory
In mathematics, computational group theory is the study of group (mathematics), groups by means of computers. It is concerned with designing and analysing algorithms and data structures to compute information about groups. The subject has attracted interest because for many interesting groups (including most of the sporadic groups) it is impractical to perform calculations by hand. Important algorithms in computational group theory include: * the Schreier–Sims algorithm for finding the order (group theory), order of a permutation group * the Todd–Coxeter algorithm and Knuth–Bendix algorithm for coset enumeration * the product-replacement algorithm for finding random elements of a group Two important computer algebra systems (CAS) used for group theory are GAP computer algebra system, GAP and Magma computer algebra system, Magma. Historically, other systems such as CAS (for character theory) and Cayley computer algebra system, Cayley (a predecessor of Magma) were important. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John Arthur Todd
John Arthur Todd (23 August 1908 – 22 December 1994) was an English mathematician who specialised in geometry. Biography He was born in Liverpool, and went up to Trinity College, Cambridge in 1925. He did research under H.F. Baker, and in 1931 took a position at the University of Manchester. He became a lecturer at Cambridge in 1937. He remained at Cambridge for the rest of his working life. Work The Todd class in the theory of the higher-dimensional Riemann–Roch theorem is an example of a characteristic class (or, more accurately, a reciprocal of one) that was discovered by Todd in work published in 1937. It used the methods of the Italian school of algebraic geometry. The Todd–Coxeter process for coset enumeration is a major method of computational algebra, and dates from a collaboration with H.S.M. Coxeter in 1936. In 1953 he and Coxeter discovered the Coxeter–Todd lattice. In 1954 he and G. C. Shephard classified the finite complex reflection groups. Honours In M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Todd–Coxeter Algorithm
In group theory, the Todd–Coxeter algorithm, created by J. A. Todd and H. S. M. Coxeter in 1936, is an algorithm for solving the coset enumeration problem. Given a presentation of a group ''G'' by generators and relations and a subgroup ''H'' of ''G'', the algorithm enumerates the cosets of ''H'' on ''G'' and describes the Group_action_(mathematics)#Examples, permutation representation of ''G'' on the space of the cosets (given by the left multiplication action). If the order of a group ''G'' is relatively small and the subgroup ''H'' is known to be uncomplicated (for example, a cyclic group), then the algorithm can be carried out by hand and gives a reasonable description of the group ''G''. Using their algorithm, Coxeter and Todd showed that certain systems of relations between generators of known groups are complete, i.e. constitute systems of defining relations. The Todd–Coxeter algorithm can be applied to infinite groups and is known to terminate in a finite number of steps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Word Problem For Groups
In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group ''G'' is the algorithmic problem of deciding whether two words in the generators represent the same element. More precisely, if ''A'' is a finite set of generators for ''G'' then the word problem is the membership problem for the formal language of all words in ''A'' and a formal set of inverses that map to the identity under the natural map from the free monoid with involution on ''A'' to the group ''G''. If ''B'' is another finite generating set for ''G'', then the word problem over the generating set ''B'' is equivalent to the word problem over the generating set ''A''. Thus one can speak unambiguously of the decidability of the word problem for the finitely generated group ''G''. The related but different uniform word problem for a class ''K'' of recursively presented groups is the algorithmic problem of deciding, given as input a pres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]