Continued Fraction Factorization
   HOME
*





Continued Fraction Factorization
In number theory, the continued fraction factorization method (CFRAC) is an integer factorization algorithm. It is a general-purpose algorithm, meaning that it is suitable for factoring any integer ''n'', not depending on special form or properties. It was described by D. H. Lehmer and R. E. Powers in 1931, and developed as a computer algorithm by Michael A. Morrison and John Brillhart in 1975. The continued fraction method is based on Dixon's factorization method. It uses convergents in the regular continued fraction expansion of :\sqrt,\qquad k\in\mathbb. Since this is a quadratic irrational In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducibl ..., the continued fraction must be periodic (unless ''n'' is square, in which case the factorization is obvious). It has a time complexity o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer Factorization
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing. In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number ( RSA-240) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derrick Henry Lehmer
Derrick Henry "Dick" Lehmer (February 23, 1905 – May 22, 1991), almost always cited as D.H. Lehmer, was an American mathematician significant to the development of computational number theory. Lehmer refined Édouard Lucas' work in the 1930s and devised the Lucas–Lehmer test for Mersenne primes. His peripatetic career as a number theorist, with him and his wife taking numerous types of work in the United States and abroad to support themselves during the Great Depression, fortuitously brought him into the center of research into early electronic computing. Early life Lehmer was born in Berkeley, California, to Derrick Norman Lehmer, a professor of mathematics at the University of California, Berkeley, and Clara Eunice Mitchell. He studied physics and earned a Bachelor degree from UC Berkeley, and continued with graduate studies at the University of Chicago. He and his father worked together on Lehmer sieves. Marriage During his studies at Berkeley, Lehmer met Emma Markov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Brillhart
John David Brillhart (November 13, 1930 – May 21, 2022) was a mathematician who worked in number theory at the University of Arizona. Early life and education Brillhart was born on November 13, 1930 in Berkeley, California. He studied at the University of California, Berkeley, where he received his A.B. in 1953, his M.A. in 1966, and his Ph.D. in 1967. His doctoral thesis in mathematics was supervised by D. H. Lehmer, with assistance from Leonard Carlitz. Before becoming a mathematician, he served in the United States Army. Career Brillhart joined the faculty at the University of Arizona in 1967 and retired in 2001. He advised two Ph.D. students. Research Brillart worked in integer factorization. His joint work with Michael A. Morrison in 1975 describes how to implement the continued fraction factorization method originally developed by Lehmer and Ralph Ernest Powers in 1931. One consequence was the first factorization of the Fermat number F^7 = 2^+1. Their ideas were in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dixon's Factorization Method
In number theory, Dixon's factorization method (also Dixon's random squares method or Dixon's algorithm) is a general-purpose integer factorization algorithm; it is the prototypical factor base method. Unlike for other factor base methods, its run-time bound comes with a rigorous proof that does not rely on conjectures about the smoothness properties of the values taken by polynomial. The algorithm was designed by John D. Dixon, a mathematician at Carleton University, and was published in 1981. Basic idea Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random ''x'' values and hoping that the integer ''x''2 mod N is a perfect square (in the integers): :x^2\equiv y^2\quad(\hboxN),\qquad x\not\equiv\pm y\quad(\hboxN). For example, if , (by starting at 292, the first number greater than and counting up) the is 256, the square ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convergent (continued Fraction)
In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or functions are used in place of one or more of the numerators or the integers in the denominators, the resulting expression is a generalized continued fraction. When it is necessa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continued Fraction
In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or functions are used in place of one or more of the numerators or the integers in the denominators, the resulting expression is a generalized continued fraction. When it is nece ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Irrational
In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as :, for integers ; with , and non-zero, and with square-free. When is positive, we get real quadratic irrational numbers, while a negative gives complex quadratic irrational numbers which are not real numbers. This defines an injection from the quadratic irrationals to quadruples of integers, so their cardinality is at most countable; si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Periodic Continued Fraction
In mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form : x = a_0 + \cfrac where the initial block of ''k'' + 1 partial denominators is followed by a block 'a''''k''+1, ''a''''k''+2,...''a''''k''+''m''of partial denominators that repeats over and over again, ''ad infinitum''. For example, \sqrt2 can be expanded to a periodic continued fraction, namely as ,2,2,2,... The partial denominators can in general be any real or complex numbers. That general case is treated in the article convergence problem. The remainder of this article is devoted to the subject of simple continued fractions that are also periodic. In other words, the remainder of this article assumes that all the partial denominators ''a''''i'' (''i'' ≥ 1) are positive integers. Purely periodic and periodic fractions Since all the partial numerators in a regular continued fraction are equal to unity we can adopt a shorthand notation in which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for '' Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


L-notation
''L''-notation is an asymptotic notation analogous to big-O notation, denoted as L_n alpha,c/math> for a bound variable n tending to infinity. Like big-O notation, it is usually used to roughly convey the rate of growth of a function, such as the computational complexity of a particular algorithm. Definition It is defined as :L_n alpha,ce^ where ''c'' is a positive constant, and \alpha is a constant 0 \leq \alpha \leq 1. L-notation is used mostly in computational number theory, to express the complexity of algorithms for difficult number theory problems, e.g. sieves for integer factorization and methods for solving discrete logarithms. The benefit of this notation is that it simplifies the analysis of these algorithms. The e^ expresses the dominant term, and the e^ takes care of everything smaller. When \alpha is 0, then :L_n alpha,c= L_n , c= e^ = (\ln n)^\, is a polynomial function of ln ''n''; When \alpha is 1 then :L_n alpha,c= L_n , c= e^ = n^\, is a fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]