Chained Rotations
   HOME



picture info

Chained Rotations
In physics and engineering, Davenport chained rotations are three chained intrinsic rotations about body-fixed specific axes. Euler rotations and Tait–Bryan rotations are particular cases of the Davenport general rotation decomposition. The angles of rotation are called Davenport angles because the general problem of decomposing a rotation in a sequence of three was studied first by Paul B. Davenport. The non-orthogonal rotating coordinate system may be imagined to be rigidly attached to a rigid body. In this case, it is sometimes called a ''local'' coordinate system. Given that rotation axes are solidary with the moving body, the generalized rotations can be divided into two groups (here ''x'', ''y'' and ''z'' refer to the non-orthogonal moving frame): ; Generalized Euler rotations: ; Generalized Tait–Bryan rotations: . Most of the cases belong to the second group, given that the generalized Euler rotations are a degenerated case in which first and third axes are overlapping ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Plane With ENU Embedded Axes
Plane most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface * Plane (mathematics), generalizations of a geometrical plane Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes'' (genus), marsh crabs in Grapsidae * '' Bindahara phocides'', the plane butterfly of Asia Maritime transport * Planing (boat), where weight is predominantly supported by hydrodynamic lift * ''Plane'' (wherry), a Norfolk canal boat, in use 1931–1949 Music *"Planes", a 1976 song by Colin Blunstone *"Planes (Experimental Aircraft)", a 1989 song by Jefferson Airplane from ''Jefferson Airplane'' *" Planez", originally "Planes", a 2015 song by Jeremih *"The Plane", a 1987 song on the '' Empire of the Sun'' soundtrack *"The Plane", a 1997 song by Kinito Méndez Other entertainment * Plane (''Dungeons & Dragons''), any fictional realm of the D&D roleplaying game's multiverse * ''Pla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclidean Symmetries
In geometry, an object has symmetry if there is an Operation (mathematics), operation or Transformation (function), transformation (such as Translation (geometry), translation, Scaling (geometry), scaling, Rotation (mathematics), rotation or Reflection (mathematics), reflection) that maps the figure/object onto itself (i.e., the object has an Invariant (mathematics), invariance under the transform). Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be ''symmetric under rotation'' or to have ''rotational symmetry''. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry. The types of symmetries that are possible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation In Three Dimensions
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a ''center of rotation''. A solid figure has an infinite number of possible axes and angles of rotation, including chaotic rotation (between arbitrary orientations), in contrast to rotation around a axis. The special case of a rotation with an internal axis passing through the body's own center of mass is known as a spin (or ''autorotation''). In that case, the surface intersection of the internal ''spin axis'' can be called a ''pole''; for example, Earth's rotation defines the geographical poles. A rotation around an axis completely external to the moving body is called a revolution (or ''orbit''), e.g. Earth's orbit around the Sun. The ends of the external ''axis of revolution'' can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Givens Rotation
In numerical linear algebra, a Givens rotation is a rotation in the plane spanned by two coordinates axes. Givens rotations are named after Wallace Givens, who introduced them to numerical analysts in the 1950s while he was working at Argonne National Laboratory. As action on matrices A Givens rotation acting on a matrix from the left is a row operation, moving data between rows but always within the same column. Unlike the elementary operation of row-addition, a Givens rotation changes both of the rows addressed by it. To understand how it is a rotation, one may denote the elements of one target row by x_1 through x_n and the elements of the other target row by y_1 through y_n: \begin \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1 & y_2 & \dots & y_n \\ \vdots & \vdots & \ddots & \vdots \end Then the effect of a Givens rotation is to rotate each subvector (x_k,y_k) by the same angle. As with row- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Decomposition
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. Example In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For example, when solving a system of linear equations A \mathbf = \mathbf, the matrix ''A'' can be decomposed via the LU decomposition. The LU decomposition factorizes a matrix into a lower triangular matrix ''L'' and an upper triangular matrix ''U''. The systems L(U \mathbf) = \mathbf and U \mathbf = L^ \mathbf require fewer additions and multiplications to solve, compared with the original system A \mathbf = \mathbf, though one might require significantly more digits in inexact arithmetic such as floating point. Similarly, the QR decomposition expresses ''A'' as ''QR'' with ''Q'' an orthogonal matrix and ''R'' an upp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternative Definition
Alternative or alternate may refer to: Arts, entertainment and media * Alternative (''Kamen Rider''), a character in the Japanese TV series ''Kamen Rider Ryuki'' * Alternative comics, or independent comics are an alternative to mainstream superhero comics * Alternative fashion, fashion that stands apart from mainstream, commercial fashion. * Alternative manga, manga published outside the more commercial market, or which have different art styles, themes, and narratives to those found in the more popular manga magazines. * ''AlterNative'', academic journal * ''The Alternative'' (film), a 1978 Australian television film * ''The Alternative'', a radio show hosted by Tony Evans * ''120 Minutes'' (2004 TV program), an alternative rock music video program formerly known as ''The Alternative'' *''The American Spectator'', an American magazine formerly known as ''The Alternative: An American Spectator'' Music * Alternative dance, a musical genre that mixes alternative rock with elect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Row Vector
In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some , consisting of a single row of entries, \boldsymbol a = \begin a_1 & a_2 & \dots & a_n \end. (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by ) of any row vector is a column vector, and the transpose of any column vector is a row vector: \begin x_1 \; x_2 \; \dots \; x_m \end^ = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end and \begin x_1 \\ x_2 \\ \vdots \\ x_m \end^ = \begin x_1 \; x_2 \; \dots \; x_m \end. The set of all row vectors with entries in a given field (such as the real numbers) forms an -dimensional vector space; similarly, the set of all column vectors with entries forms an -dimensional vector space. The space of row vectors with entries can be regarded as the dual spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Matrix
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation (mathematics), rotation in Euclidean space. For example, using the convention below, the matrix :R = \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end rotates points in the plane counterclockwise through an angle about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates , it should be written as a column vector, and matrix multiplication, multiplied by the matrix : : R\mathbf = \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end \begin x \\ y \end = \begin x\cos\theta-y\sin\theta \\ x\sin\theta+y\cos\theta \end. If and are the coordinates of the endpoint of a vector with the length ''r'' and the angle \phi with respect to the -axis, so that x = r \cos \phi and y = r \sin \phi, then the above equations become the List of trigonometric identities#Angle sum and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Column Vector
In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some , consisting of a single row of entries, \boldsymbol a = \begin a_1 & a_2 & \dots & a_n \end. (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by ) of any row vector is a column vector, and the transpose of any column vector is a row vector: \begin x_1 \; x_2 \; \dots \; x_m \end^ = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end and \begin x_1 \\ x_2 \\ \vdots \\ x_m \end^ = \begin x_1 \; x_2 \; \dots \; x_m \end. The set of all row vectors with entries in a given field (such as the real numbers) forms an -dimensional vector space; similarly, the set of all column vectors with entries forms an -dimensional vector space. The space of row vectors with entries can be regarded as the dual sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]