Category Of Diagrams
In category theory, a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a ''function'' from a fixed index ''set'' to the class of ''sets''. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a ''functor'' from a fixed index ''category'' to some ''category''. The universal functor of a diagram is the diagonal functor; its right adjoint is the limit of the diagram and its left adjoint is the colimit. The natural transformation from the diagonal functor to some arbitrary diagram is called a cone. Definition Formally, a diagram of type ''J'' in a category ''C'' is a ( covariant) functor The category ''J'' is called the index category or the scheme of the diagram ''D''; the functor is sometimes called a ''J' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Category
In mathematics, in the field of category theory, a discrete category is a category whose only morphisms are the identity morphisms: :hom''C''(''X'', ''X'') = {id''X''} for all objects ''X'' :hom''C''(''X'', ''Y'') = ∅ for all objects ''X'' ≠ ''Y'' Since by axioms, there is always the identity morphism between the same object, we can express the above as condition on the cardinality of the hom-set :, hom''C''(''X'', ''Y'') , is 1 when ''X'' = ''Y'' and 0 when ''X'' is not equal to ''Y''. Some authors prefer a weaker notion, where a discrete category merely needs to be equivalent to such a category. Simple facts Any class of objects defines a discrete category when augmented with identity maps. Any subcategory of a discrete category is discrete. Also, a category is discrete if and only if all of its subcategories are full. The limit of any functor from a discrete category into another category is called a product, while the colimit is called a coproduct. Thus, for examp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coequalizer
In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer. Definition A coequalizer is a colimit of the diagram consisting of two objects ''X'' and ''Y'' and two parallel morphisms ''f'', ''g'' : ''X'' → ''Y''. More explicitly, a coequalizer can be defined as an object ''Q'' together with a morphism ''q'' : ''Y'' → ''Q'' such that ''q'' ∘ ''f'' = ''q'' ∘ ''g''. Moreover, the pair (''Q'', ''q'') must be universal in the sense that given any other such pair (''Q''′, ''q''′) there exists a unique morphism ''u'' : ''Q'' → ''Q''′ such that ''u'' ∘ ''q'' = ''q''′. This information can be captured by the following commutative diagram: As with all universal constructions, a coequalizer, if it exists, is unique up to a unique isomorphism (this is why, by abuse of language, one sometimes speaks of " ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equaliser (mathematics)
In mathematics, an equaliser is a set of arguments where two or more functions have equal values. An equaliser is the solution set of an equation. In certain contexts, a difference kernel is the equaliser of exactly two functions. Definitions Let ''X'' and ''Y'' be sets. Let ''f'' and ''g'' be functions, both from ''X'' to ''Y''. Then the ''equaliser'' of ''f'' and ''g'' is the set of elements ''x'' of ''X'' such that ''f''(''x'') equals ''g''(''x'') in ''Y''. Symbolically: : \operatorname(f, g) := \. The equaliser may be denoted Eq(''f'', ''g'') or a variation on that theme (such as with lowercase letters "eq"). In informal contexts, the notation is common. The definition above used two functions ''f'' and ''g'', but there is no need to restrict to only two functions, or even to only finitely many functions. In general, if F is a set of functions from ''X'' to ''Y'', then the ''equaliser'' of the members of F is the set of elements ''x'' of ''X'' such that, given any tw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quiver (mathematics)
In graph theory, a quiver is a directed graph where Loop (graph theory), loops and multiple arrows between two vertex (graph theory), vertices are allowed, i.e. a multidigraph. They are commonly used in representation theory: a representation of a quiver assigns a vector space to each vertex of the quiver and a linear map to each arrow . In category theory, a quiver can be understood to be the underlying structure of a category (mathematics), category, but without composition or a designation of identity morphisms. That is, there is a forgetful functor from to . Its left adjoint is a free functor which, from a quiver, makes the corresponding free category. Definition A quiver Γ consists of: * The set ''V'' of vertices of Γ * The set ''E'' of edges of Γ * Two functions: ''s'': ''E'' → ''V'' giving the ''start'' or ''source'' of the edge, and another function, ''t'': ''E'' → ''V'' giving the ''target'' of the edge. This definition is identica ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Walking Quiver
In graph theory, a quiver is a directed graph where loops and multiple arrows between two vertices are allowed, i.e. a multidigraph. They are commonly used in representation theory: a representation of a quiver assigns a vector space to each vertex of the quiver and a linear map to each arrow . In category theory, a quiver can be understood to be the underlying structure of a category, but without composition or a designation of identity morphisms. That is, there is a forgetful functor from to . Its left adjoint is a free functor which, from a quiver, makes the corresponding free category. Definition A quiver Γ consists of: * The set ''V'' of vertices of Γ * The set ''E'' of edges of Γ * Two functions: ''s'': ''E'' → ''V'' giving the ''start'' or ''source'' of the edge, and another function, ''t'': ''E'' → ''V'' giving the ''target'' of the edge. This definition is identical to that of a multidigraph. A morphism of quivers is defined as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Quiver
In graph theory, a quiver is a directed graph where loops and multiple arrows between two vertices are allowed, i.e. a multidigraph. They are commonly used in representation theory: a representation of a quiver assigns a vector space to each vertex of the quiver and a linear map to each arrow . In category theory, a quiver can be understood to be the underlying structure of a category, but without composition or a designation of identity morphisms. That is, there is a forgetful functor from to . Its left adjoint is a free functor which, from a quiver, makes the corresponding free category. Definition A quiver Γ consists of: * The set ''V'' of vertices of Γ * The set ''E'' of edges of Γ * Two functions: ''s'': ''E'' → ''V'' giving the ''start'' or ''source'' of the edge, and another function, ''t'': ''E'' → ''V'' giving the ''target'' of the edge. This definition is identical to that of a multidigraph. A morphism of quivers is defined as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pullback (category Theory)
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is often written : and comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative square. The dual concept of the pullback is the ''pushout''. Universal property Explicitly, a pullback of the morphisms and consists of an object and two morphisms and for which the diagram : commutes. Moreover, the pullback must be universal wit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cospan
In category theory, a span, roof or correspondence is a generalization of the notion of relation between two objects of a category. When the category has all pullbacks (and satisfies a small number of other conditions), spans can be considered as morphisms in a category of fractions. The notion of a span is due to Nobuo Yoneda (1954) and Jean Bénabou (1967). Formal definition A span is a diagram of type \Lambda = (-1 \leftarrow 0 \rightarrow +1), i.e., a diagram of the form Y \leftarrow X \rightarrow Z. That is, let Λ be the category (-1 ← 0 → +1). Then a span in a category ''C'' is a functor ''S'' : Λ → ''C''. This means that a span consists of three objects ''X'', ''Y'' and ''Z'' of ''C'' and morphisms ''f'' : ''X'' → ''Y'' and ''g'' : ''X'' → ''Z'': it is two maps with common ''domain''. The colimit of a span is a pushout. Examples * If ''R'' is a relation between sets ''X'' and ''Y'' (i.e. a s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual (category Theory)
In category theory, a branch of mathematics, duality is a correspondence between the properties of a category ''C'' and the dual properties of the opposite category ''C''op. Given a statement regarding the category ''C'', by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category ''C''op. Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement is true about ''C'', then its dual statement is true about ''C''op. Also, if a statement is false about ''C'', then its dual has to be false about ''C''op. Given a concrete category ''C'', it is often the case that the opposite category ''C''op per se is abstract. ''C''op need not be a category that arises from mathematical practice. In this case, another category ''D'' is also termed to be in duality with ''C'' if ''D'' and ''C''op are e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Index Set
In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consists of a surjective function from onto , and the indexed collection is typically called an '' (indexed) family'', often written as . Examples *An enumeration of a set gives an index set J \sub \N, where is the particular enumeration of . *Any countably infinite set can be (injectively) indexed by the set of natural numbers \N. *For r \in \R, the indicator function on is the function \mathbf_r\colon \R \to \ given by \mathbf_r (x) := \begin 0, & \mbox x \ne r \\ 1, & \mbox x = r. \end The set of all such indicator functions, \_ , is an uncountable set indexed by \mathbb. Other uses In computational complexity theory and cryptography, an index set is a set for which there exists an algorithm that can sample the set efficiently; e. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pushout (category Theory)
In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a diagram consisting of two morphisms ''f'' : ''Z'' → ''X'' and ''g'' : ''Z'' → ''Y'' with a common domain. The pushout consists of an object ''P'' along with two morphisms ''X'' → ''P'' and ''Y'' → ''P'' that complete a commutative square with the two given morphisms ''f'' and ''g''. In fact, the defining universal property of the pushout (given below) essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are P = X \sqcup_Z Y and P = X +_Z Y. The pushout is the categorical dual of the pullback. Universal property Explicitly, the pushout of the morphisms ''f'' and ''g'' consists of an object ''P'' and two morphisms ''i''1 : ''X'' → ''P'' and ''i''2 : ''Y'' → ''P'' such that the diagram : commutes and such that (' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |