HOME
*





Categorical Semantics
__NOTOC__ Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970. Overview There are three important themes in the categorical approach to logic: ;Categorical semantics: Categorical logic introduces the notion of ''structure valued in a category'' C with the classical model theoretic notion of a structure appearing in the particular case where C is the category of sets and functions. This notion has proven useful when the set-theoretic notion of a model lacks generality and/or is inconvenient. R.A.G. Seely's modeling of var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Effective Topos
In mathematics, the effective topos is a topos In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notio ... introduced by , based on Kleene's notion of recursive realizability, that captures the idea of effectivity in mathematics. References * * * * Topos theory {{cattheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


History Of Topos Theory
This article gives some very general background to the mathematical idea of topos. This is an aspect of category theory, and has a reputation for being abstruse. The level of abstraction involved cannot be reduced beyond a certain point; but on the other hand context can be given. This is partly in terms of historical development, but also to some extent an explanation of differing attitudes to category theory. In the school of Grothendieck During the latter part of the 1950s, the foundations of algebraic geometry were being rewritten; and it is here that the origins of the topos concept are to be found. At that time the Weil conjectures were an outstanding motivation to research. As we now know, the route towards their proof, and other advances, lay in the construction of étale cohomology. With the benefit of hindsight, it can be said that algebraic geometry had been wrestling with two problems for a long time. The first was to do with its ''points'': back in the days of project ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpretati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter J
Peter may refer to: People * List of people named Peter, a list of people and fictional characters with the given name * Peter (given name) ** Saint Peter (died 60s), apostle of Jesus, leader of the early Christian Church * Peter (surname), a surname (including a list of people with the name) Culture * Peter (actor) (born 1952), stage name Shinnosuke Ikehata, Japanese dancer and actor * ''Peter'' (album), a 1993 EP by Canadian band Eric's Trip * ''Peter'' (1934 film), a 1934 film directed by Henry Koster * ''Peter'' (2021 film), Marathi language film * "Peter" (''Fringe'' episode), an episode of the television series ''Fringe'' * ''Peter'' (novel), a 1908 book by Francis Hopkinson Smith * "Peter" (short story), an 1892 short story by Willa Cather Animals * Peter, the Lord's cat, cat at Lord's Cricket Ground in London * Peter (chief mouser), Chief Mouser between 1929 and 1946 * Peter II (cat), Chief Mouser between 1946 and 1947 * Peter III (cat), Chief Mouser between 1947 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metalogic
Metalogic is the study of the metatheory of logic. Whereas ''logic'' studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems.Harry GenslerIntroduction to Logic Routledge, 2001, p. 336. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived ''about'' the languages and systems that are used to express truths. Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic', University of California Press, 1973 The basic objects of metalogical study are formal languages, formal systems, and their interpretations. The study of interpretation of formal systems is the branch of mathematical logic that is known as model theory, and the study of deductive systems is the branch that is known as proof theory. Overview Formal language A ''formal language'' is an organized set of symbols, the symbols of which precis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Property
In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property. Technically, a universal property is defined in terms of categories and functors by mean of a universal morphism (see , below). Universal morphisms can also be thought more abstractly as initial or terminal objects of a comma category ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Of Categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation. If a category is equivalent to the opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent. An equivalence of categories consists of a functor between the involved categories, which is required t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartesian Closed Category
In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation. Etymology Named after (1596–1650), French philosopher, mathematician, and scientist, whose formulation of analytic geometry gave rise to the concept of Cartesian product, which was later generalized to the notion of categorical product. Definition The category ''C'' is called Cartesian closed if and only if it satisfies the following three properties: * It has a terminal object. * Any two objects ''X'' and ''Y'' of ''C'' have a product ''X'' ×''Y'' in ''C' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simply Typed Lambda Calculus
The simply typed lambda calculus (\lambda^\to), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor (\to) that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus. The term ''simple type'' is also used to refer extensions of the simply typed lambda calculus such as products, coproducts or natural numbers ( System T) or even full recursion (like PCF). In contrast, systems which introduce polymorphic types (like System F) or dependent types (like the Logical Framework) are not considered ''simply typed''. The simple types, except for full recursion, are still considered ''simple'' because the Church encodings of such structures can be done using only \to and suitable type variables, while polymorphism and dependency cannot. Syntax In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equational Logic
First-order equational logic consists of quantifier-free terms of ordinary first-order logic, with equality as the only predicate symbol. The model theory of this logic was developed into universal algebra by Birkhoff, Grätzer, and Cohn. It was later made into a branch of category theory by Lawvere ("algebraic theories").equational logic. (n.d.). The Free On-line Dictionary of Computing. Retrieved October 24, 2011, from Dictionary.com website: http://dictionary.reference.com/browse/equational+logic The terms of equational logic are built up from variables and constants using function symbols (or operations). Syllogism Here are the four inference rules of logic. P := E/math> denotes textual substitution of expression E for variable x in expression P. Next, b = c denotes equality, for b and c of the same type, while b \equiv c, or equivalence, is defined only for b and c of type boolean. For b and c of type boolean, b = c and b \equiv c have the same meaning. Gries, D. (2010 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]