HOME
*





Birack
In mathematics, biquandles and biracks are sets with binary operations that generalize quandles and racks. Biquandles take, in the theory of virtual knots, the place that quandles occupy in the theory of classical knots. Biracks and racks have the same relation, while a biquandle is a birack which satisfies some additional conditions. Definitions Biquandles and biracks have two binary operations on a set X written a^b and a_b . These satisfy the following three axioms: 1. (a^b)^= ^ 2. _= _ 3. ^= _ These identities appeared in 1992 in reference RSwhere the object was called a species. The superscript and subscript notation is useful here because it dispenses with the need for brackets. For example, if we write a*b for a_b and a\mathbinb for a^b then the three axioms above become 1. (a\mathbinb)\mathbin(c*b)=(a\mathbinc)\mathbin(b\mathbinc) 2. (a*b)*(c*b)=(a*c)*(b\mathbinc) 3. (a*b)\mathbin(c*b)=(a\mathbinc)*(b\mathbinc) If in addition the two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birack
In mathematics, biquandles and biracks are sets with binary operations that generalize quandles and racks. Biquandles take, in the theory of virtual knots, the place that quandles occupy in the theory of classical knots. Biracks and racks have the same relation, while a biquandle is a birack which satisfies some additional conditions. Definitions Biquandles and biracks have two binary operations on a set X written a^b and a_b . These satisfy the following three axioms: 1. (a^b)^= ^ 2. _= _ 3. ^= _ These identities appeared in 1992 in reference RSwhere the object was called a species. The superscript and subscript notation is useful here because it dispenses with the need for brackets. For example, if we write a*b for a_b and a\mathbinb for a^b then the three axioms above become 1. (a\mathbinb)\mathbin(c*b)=(a\mathbinc)\mathbin(b\mathbinc) 2. (a*b)*(c*b)=(a*c)*(b\mathbinc) 3. (a*b)\mathbin(c*b)=(a\mathbinc)*(b\mathbinc) If in addition the two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Racks And Quandles
In mathematics, racks and quandles are sets with binary operations satisfying axioms analogous to the Reidemeister moves used to manipulate knot diagrams. While mainly used to obtain invariants of knots, they can be viewed as algebraic constructions in their own right. In particular, the definition of a quandle axiomatizes the properties of conjugation in a group. History In 1943, Mituhisa Takasaki (高崎光久) introduced an algebraic structure which he called a ''Kei'' (圭), which would later come to be known as an involutive quandle. His motivation was to find a nonassociative algebraic structure to capture the notion of a reflection in the context of finite geometry. The idea was rediscovered and generalized in (unpublished) 1959 correspondence between John Conway and Gavin Wraith, who at the time were undergraduate students at the University of Cambridge. It is here that the modern definitions of quandles and of racks first appear. Wraith had become interested in these s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quandle
In mathematics, racks and quandles are sets with binary operations satisfying axioms analogous to the Reidemeister moves used to manipulate knot diagrams. While mainly used to obtain invariants of knots, they can be viewed as algebraic constructions in their own right. In particular, the definition of a quandle axiomatizes the properties of conjugation in a group. History In 1943, Mituhisa Takasaki (高崎光久) introduced an algebraic structure which he called a ''Kei'' (圭), which would later come to be known as an involutive quandle. His motivation was to find a nonassociative algebraic structure to capture the notion of a reflection in the context of finite geometry. The idea was rediscovered and generalized in (unpublished) 1959 correspondence between John Conway and Gavin Wraith, who at the time were undergraduate students at the University of Cambridge. It is here that the modern definitions of quandles and of racks first appear. Wraith had become interested in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Virtual Knot
In knot theory, a virtual knot is a generalization of knots in 3-dimensional Euclidean space, , to knots in thickened surfaces \Sigma \times ,1 modulo an equivalence relation called stabilization/destabilization. Here \Sigma is required to be closed and oriented. Virtual knots were first introduced by . Overview In the theory of classical knots, knots can be considered equivalence classes of knot diagrams under the Reidemeister moves. Likewise a virtual knot can be considered an equivalence of virtual knot diagrams that are equivalent under generalized Reidemeister moves. Virtual knots allow for the existence of, for example, knots whose Gauss codes which could not exist in 3-dimensional Euclidean space. A virtual knot diagram is a 4-valent planar graph, but each vertex is now allowed to be a classical crossing or a new type called virtual. The generalized moves show how to manipulate such diagrams to obtain an equivalent diagram; one move called the semi-virtual move inv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot (mathematics)
In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of which takes one knot to the other. A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed — there are no ends to tie or untie on a mathematical knot. Physical properties such as friction and thickness also do not apply, although there are mathematical definitions of a knot that take such properties into account. The term ''knot'' is also applied to embeddings of in , especially in the case . The branch of mathematics that studies knots is known as knot theory and has many relations to graph theory. Formal definition A knot is an embedding of the circle () into three-dimensional Euclidean space (), or the 3-sphere (), since the 3-sphere is compact. Two knots are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is a right inverse of . (An identity element is an element such that and for all and for which the left-hand sides are defined.) When the operation is associative, if an element has both a left inverse and a right inverse, then these two inverses are equal and unique; they are called the ''inverse element'' or simply the ''inverse''. Often an adjective is added for specifying the operation, such as in additive inverse, multiplicative inverse, and functional inverse. In this case (associative operation), an invertible element is an element that has an inverse. Inverses are commonly used in groupswhere every element is invertible, and ringswhere invertible elements are also called units. They are also commonly used for operations that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Identity (mathematics)
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding them. Trigonometric identities Geometrically, trigonometric ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bijection
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a one-to-one (injective) and onto (surjective) mapping of a set ''X'' to a set ''Y''. The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an injective function; see figures). A bijection from the set ''X'' to the set ''Y'' has an inverse function from ''Y'' to ''X''. If ''X'' and ''Y'' are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set-theoretic
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational system fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




European Journal Of Combinatorics
European, or Europeans, or Europeneans, may refer to: In general * ''European'', an adjective referring to something of, from, or related to Europe ** Ethnic groups in Europe ** Demographics of Europe ** European cuisine European cuisine comprises the cuisines of Europe "European Cuisine."European Union ** Citizenship of the European Union **
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]