Biquaternion
In abstract algebra, the biquaternions are the numbers , where , and are complex numbers, or variants thereof, and the elements of multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof: * Biquaternions when the coefficients are complex numbers. * Split-biquaternions when the coefficients are split-complex numbers. * Dual quaternions when the coefficients are dual numbers. This article is about the ''ordinary biquaternions'' named by William Rowan Hamilton in 1844. Some of the more prominent proponents of these biquaternions include Alexander Macfarlane, Arthur W. Conway, Ludwik Silberstein, and Cornelius Lanczos. As developed below, the unit quasi-sphere of the biquaternions provides a representation of the Lorentz group, which is the foundation of special relativity. The algebra of biquaternions can be considered as a tensor product of algebras, tensor product , ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Split-biquaternion
In mathematics, a split-biquaternion is a hypercomplex number of the form : q = w + x\mathrm + y\mathrm + z\mathrm , where ''w'', ''x'', ''y'', and ''z'' are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient ''w'', ''x'', ''y'', ''z'' spans two real dimensions, the split-biquaternion is an element of an eight-dimensional vector space. Considering that it carries a multiplication, this vector space is an algebra over the real field, or an algebra over a ring where the split-complex numbers form the ring. This algebra was introduced by William Kingdon Clifford in an 1873 article for the London Mathematical Society. It has been repeatedly noted in mathematical literature since then, variously as a deviation in terminology, an illustration of the tensor product of algebras, and as an illustration of the direct sum of algebras. The split-biquaternions have been identified in various ways by algebraists; see ' below. Modern definitio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bivector (complex)
In mathematics, a bivector is the vector part of a biquaternion. For biquaternion , ''w'' is called the biscalar and is its bivector part. The coordinates ''w'', ''x'', ''y'', ''z'' are complex numbers with imaginary unit h: :x = x_1 + \mathrm x_2,\ y = y_1 + \mathrm y_2,\ z = z_1 + \mathrm z_2, \quad \mathrm^2 = -1 = \mathrm^2 = \mathrm^2 = \mathrm^2 . A bivector may be written as the sum of real and imaginary parts: :(x_1 \mathrm + y_1 \mathrm + z_1 \mathrm) + \mathrm (x_2 \mathrm + y_2 \mathrm + z_2 \mathrm) where r_1 = x_1 \mathrm + y_1 \mathrm + z_1 \mathrm and r_2 = x_2 \mathrm + y_2 \mathrm + z_2 \mathrm are vectors. Thus the bivector q = x \mathrm + y \mathrm + z \mathrm = r_1 + \mathrm r_2 . Link from David R. Wilkins collection at Trinity College, Dublin The Lie algebra of the Lorentz group is expressed by bivectors. In particular, if ''r''1 and ''r''2 are right versors so that r_1^2 = -1 = r_2^2, then the biquaternion curve traces over and over the unit circle in th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Quaternion
In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form , where ''A'' and ''B'' are ordinary quaternions and ''ε'' is the dual unit, which satisfies and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra. In mechanics, the dual quaternions are applied as a number system to represent rigid transformations in three dimensions. Since the space of dual quaternions is 8-dimensional and a rigid transformation has six real degrees of freedom, three for translations and three for rotations, dual quaternions obeying two algebraic constraints are used in this application. Since unit quaternions are subject to two algebraic constraints, unit quaternion ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set together with operations of multiplication and addition and scalar multiplication by elements of a field (mathematics), field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras where associativity of multiplication is assumed, and non-associative algebras, where associativity is not assumed (but not excluded, either). Given an integer ''n'', the ring (mathematics), ring of real matrix, real square matrix, square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clifford Algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford (1845–1879). The most familiar Clifford algebras, the orthogonal Clifford algebras, are also referred to as (''pseudo-'')''Riemannian Clifford algebras'', as distinct from ''symplectic Clifford algebras''. Introduction and basic properties A Clifford algebra is a unital associative algebra that contains and is generated by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spacetime Algebra
In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of special relativity, relativistic physics, including the Dirac equation, Maxwell's equations, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical physics, classical, quantum mechanics, quantum and Relativistic quantum mechanics, relativistic physics." Spacetime algebra is a vector space that allows not only Vector (geometry), vectors, but also bivectors (directed quantities describing rotations associated with rotations or particular planes, such as areas, or rotations) or Blade (geometry), blades (quantities associated with particular hyper-volumes) to be combined, as well as rotation, rotated, Reflection (mathematics), reflected, or Lorentz boosted. It is also the natural parent algebra of spinors in special relati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentz Group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: * The kinematical laws of special relativity * Maxwell's field equations in the theory of electromagnetism * The Dirac equation in the theory of the electron * The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature. In small enough regions of spacetime where gravitational variances are negligible, physical laws are Lorentz invariant in the same manner as special relativity. Basic properties The Lorentz group is a subgroup of the Poincaré group—the group of all isometries of Minkowski spacetime. Lorentz transformations are, precise ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ludwik Silberstein
Ludwik Silberstein (May 17, 1872 – January 17, 1948) was a Polish-American physicist who helped make special relativity and general relativity staples of university coursework. His textbook '' The Theory of Relativity'' was published by Macmillan in 1914 with a second edition, expanded to include general relativity, in 1924. Life Silberstein was born on May 17, 1872, in Warsaw to Samuel Silberstein and Emily Steinkalk. He was educated in Kraków, Heidelberg, and Berlin. To teach he went to Bologna, Italy from 1899 to 1904. Then he took a position at Sapienza University of Rome. In 1907 Silberstein described a bivector approach to the fundamental electromagnetic equations. When \mathbf and \mathbf represent electric and magnetic vector fields with values in \mathbb^3, then Silberstein suggested \mathbf + i \mathbf would have values in \mathbb^3, consolidating the field description with complexification. This contribution has been described as a crucial step in modernizing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Macfarlane
Alexander Macfarlane FRSE LLD (21 April 1851 – 28 August 1913) was a Scottish logician, physicist, and mathematician. Life Macfarlane was born in Blairgowrie, Scotland, to Daniel MacFarlane (Shoemaker, Blairgowrie) and Ann Small. He studied at the University of Edinburgh. His doctoral thesis "The disruptive discharge of electricity" reported on experimental results from the laboratory of Peter Guthrie Tait. In 1878 Macfarlane spoke at the Royal Society of Edinburgh on algebraic logic as introduced by George Boole. He was elected a Fellow of the Royal Society of Edinburgh. His proposers were Peter Guthrie Tait, Philip Kelland, Alexander Crum Brown, and John Hutton Balfour. The next year he published ''Principles of the Algebra of Logic'' which interpreted Boolean variable expressions with algebraic manipulation. During his life, Macfarlane played a prominent role in research and education. He taught at the universities of Edinburgh and St Andrews, was physics prof ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
William Rowan Hamilton
Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish astronomer, mathematician, and physicist who made numerous major contributions to abstract algebra, classical mechanics, and optics. His theoretical works and mathematical equations are considered fundamental to modern theoretical physics, particularly Hamiltonian mechanics, his reformulation of Lagrangian mechanics. His career included the analysis of geometrical optics, Fourier analysis, and quaternions, the last of which made him one of the founders of modern linear algebra. Hamilton was Andrews Professor of Astronomy at Trinity College Dublin. He was also the third director of Dunsink Observatory from 1827 to 1865. The Hamilton Institute at Maynooth University is named after him. Early life Hamilton was the fourth of nine children born to Sarah Hutton (1780–1817) and Archibald Hamilton (1778–1819), who lived in Dublin at 29 Dominick Street, Dublin, Dominick Street, later renumbered to 36. Ham ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Split-complex Number
In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit satisfying j^2=1, where j \neq \pm 1. A split-complex number has two real number components and , and is written z=x+yj . The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number with its conjugate is N(z) := zz^* = x^2 - y^2, an isotropic quadratic form. The collection of all split-complex numbers z=x+yj for forms an algebra over the field of real numbers. Two split-complex numbers and have a product that satisfies N(wz)=N(w)N(z). This composition of over the algebra product makes a composition algebra. A similar algebra based on and component-wise operations of addition and multiplication, where is the quadratic form on also forms a quadratic space. The ring isomorphism \begin D &\to \mathbb^2 \\ x + yj &\mapsto (x - y, x + y) \end is an isometry of quadratic spaces. Split-complex numbers have many other na ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |