HOME
*





Beam Expander
Beam expanders are optical devices that take a collimated beam of light and expand its size (or, used in reverse, reduce its size). In laser physics they are used either as intracavity or extracavity elements. They can be telescopic in nature or prismatic. Generally prismatic beam expanders use several prisms and are known as multiple-prism beam expanders. Telescopic beam expanders include refracting and reflective telescopes. A refracting telescope commonly used is the Galilean telescope which can function as a simple beam expander for collimated light. The main advantage of the Galilean design is that it never focuses a collimated beam to a point, so effects associated with high power density such as dielectric breakdown are more avoidable than with focusing designs such as the Keplerian telescope. When used as intracavity beam expanders, in laser resonators, these telescopes provide two-dimensional beam expansion in the 20–50 range. In tunable laser resonators intracav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties. Most optical phenomena can be accounted for by using the classical electromagnetic description of light. Complete electromagnetic descriptions of light are, however, often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these, geometric optics, treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive model of light, which includes wave effects such as diffraction and interference that cannot be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optics Communications
''Optics Communications'' is a peer-reviewed scientific journal published by Elsevier. It covers all fields of optical science and technology and was established in 1969. Abstracting and indexing The journal is abstracted and indexed in: *Chemical Abstracts *Current Contents/Engineering, Computing & Technology *Current Contents/Physics, Chemical, & Earth Sciences *Ei Compendex *Engineering Index * Inspec *Scopus According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 2.31. References External links *{{Official website, https://www.journals.elsevier.com/optics-communications/ Optics journals Elsevier academic journals Publications established in 1969 English-language journals Biweekly journal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiple-prism Grating Laser Oscillators
Multiple-prism grating laser oscillators,F. J. Duarte, Narrow-linewidth pulsed dye laser oscillators, in ''Dye Laser Principles'' (Academic, New York, 1990) Chapter 4. or MPG laser oscillators, use multiple-prism beam expansion to illuminate a diffraction grating mounted either in Littrow configuration or grazing-incidence configuration. Originally, these narrow-linewidth tunable dispersive oscillators were introduced as multiple-prism Littrow (MPL) grating oscillators, or hybrid multiple-prism near-grazing-incidence (HMPGI) grating cavities, in organic dye lasers. However, these designs were quickly adopted for other types of lasers such as gas lasers, diode lasers, and more recently fiber lasers. Excitation Multiple-prism grating laser oscillators can be excited either electrically, as in the case of gas lasers and semiconductor lasers,
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiple-prism Dispersion Theory
The first description of multiple-prism arrays, and multiple-prism dispersion, was given by Newton in his book ''Opticks''. Prism pair expanders were introduced by Brewster in 1813. A modern mathematical description of the single-prism dispersion was given by Born and Wolf in 1959.M. Born and E. Wolf, ''Principles of Optics'', 7th Ed. (Cambridge University, Cambridge, 1999). The generalized multiple-prism dispersion theory was introduced by Duarte and PiperF. J. Duarte and J. A. Piper, "Dispersion theory of multiple-prism beam expanders for pulsed dye lasers", ''Opt. Commun.'' 43, 303–307 (1982).F. J. Duarte and J. A. Piper, "Generalized prism dispersion theory", ''Am. J. Phys.'' 51, 1132–1134 (1982). in 1982. Generalized multiple-prism dispersion equations The generalized mathematical description of multiple-prism dispersion, as a function of the angle of incidence, prism geometry, prism refractive index, and number of prisms, was introduced as a design tool for multiple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microdensitometer
A microdensitometer is an optical instrument used to measure optical densities in the microscopic domain. J. C. Dainty and R. Shaw, ''Image Science'' (Academic, New york, 1974).T. H. James, ''The Theory of the Photographic Process'' (Eastman Kodak, Rochester, 1977). F. J. Duarte, ''Tunable Laser Optics'' (Elsevier Academic, New York, 2003) Chapter 10. A well-known microdensitometer, used in the photographic industry, is a granularity instrument or granularity machine. The granularity measurement involves the use of an optical aperture, 10-50 micrometers in diameter, and in the recording of thousands of optical density readings. The standard deviation of this series of measurements is known as the ''granularity'' of the measured transmission surface, optical film, or photographic film, in particular . An alternative version to the traditional point-by-point microdensitometer is the beam expanded laser microdensitometer.F. J. Duarte, Electro-optical interferometric microdensito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laser Communication In Space
Laser communication in space is the use of free-space optical communication in outer space. Communication may be fully in space (an inter-satellite laser link) or in a ground-to-satellite or satellite-to-ground application. The main advantage of using laser communications over Radio, radio waves is increased Bandwidth (computing), bandwidth, enabling the transfer of more data in less time. In outer space, the communication range of free-space optical communication is currently of the order of hundreds of thousands of kilometers,. Laser-based optical communication has been demonstrated between the Earth and Moon and it has the potential to bridge interplanetary distances of millions of kilometers, using optical telescopes as beam expanders. Demonstrations and tests Before 1990 On 20 January 1968, the television camera of the Surveyor 7 lunar lander successfully detected two Ion laser, argon lasers from Kitt Peak National Observatory in Arizona and Table Mountain Observato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microscopy
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy. Optical microscopy and electron microscopy involve the diffraction, reflection, or refraction of electromagnetic radiation/electron beams interacting with the specimen, and the collection of the scattered radiation or another signal in order to create an image. This process may be carried out by wide-field irradiation of the sample (for example standard light microscopy and transmission electron microscopy) or by scanning a fine beam over the sample (for example confocal laser scanning microscopy and scanning electron microscopy). Scanning probe microscopy involves the interaction of a scanning probe with the surface of the objec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Microdensitometer
A microdensitometer is an optical instrument used to measure optical densities in the microscopic domain. J. C. Dainty and R. Shaw, ''Image Science'' (Academic, New york, 1974).T. H. James, ''The Theory of the Photographic Process'' (Eastman Kodak, Rochester, 1977). F. J. Duarte, ''Tunable Laser Optics'' (Elsevier Academic, New York, 2003) Chapter 10. A well-known microdensitometer, used in the photographic industry, is a granularity instrument or granularity machine. The granularity measurement involves the use of an optical aperture, 10-50 micrometers in diameter, and in the recording of thousands of optical density readings. The standard deviation of this series of measurements is known as the ''granularity'' of the measured transmission surface, optical film, or photographic film, in particular . An alternative version to the traditional point-by-point microdensitometer is the beam expanded laser microdensitometer.F. J. Duarte, Electro-optical interferometric microdensito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-Slit Interferometer
The ''N''-slit interferometer is an extension of the double-slit experiment, double-slit interferometer also known as Young's double-slit interferometer. One of the first known uses of ''N''-slit arrays in optics was illustrated by Isaac Newton, Newton. In the first part of the twentieth century, Albert Abraham Michelson, Michelson described various cases of ''N''-slit diffraction. Richard Feynman, Feynman described thought experiments the explored two-slit quantum interference of electrons, using Braket notation, Dirac's notation. This approach was extended to ''N''-slit interferometers, by F. J. Duarte, Duarte and colleagues in 1989,F. J. Duarte and D. J. Paine, Quantum mechanical description of ''N''-slit interference phenomena, in ''Proceedings of the International Conference on Lasers '88'', R. C. Sze and F. J. Duarte (Eds.) (STS, McLean, Va, 1989) pp. 42–47. using narrow-linewidth laser illumination, that is, illumination by indistinguishable photons. The first application ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prism Compressor
A prism compressor is an optical device used to shorten the duration of a positively chirped ultrashort laser pulse by giving different wavelength components a different time delay. It typically consists of two prisms and a mirror. Figure 1 shows the construction of such a compressor. Although the dispersion of the prism material causes different wavelength components to travel along different paths, the compressor is built such that all wavelength components leave the compressor at different times, but in the same direction. If the different wavelength components of a laser pulse were already separated in time, the prism compressor can make them overlap with each other, thus causing a shorter pulse. Prism compressors are typically used to compensate for dispersion inside Ti:sapphire modelocked lasers. Each time the laser pulse inside travels through the optical components inside the laser cavity, it becomes stretched. A prism compressor inside the cavity can be designed such t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optical And Quantum Electronics
''Optical and Quantum Electronics'' is a peer-reviewed scientific journal published monthly by Springer Science+Business Media. It covers original research and tutorials in optical physics, optoelectronics, photonics, and quantum electronics. Its editors-in-chief are Daoxin Dai, Trevor M. Benson, and Marian Marciniak. Abstracting and indexing The journal is abstracted and indexed in different databases, including: *Current Contents/Engineering, Computing & Technology * Inspec * Science Citation Index Expanded *Scopus According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... of 2.084. References External links * Optics journals Springer Science+Business Media academic journals Publications establi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]