HOME
*





Axiom Of Empty Set
In axiomatic set theory, the axiom of empty set is a statement that asserts the existence of a set with no elements. It is an axiom of Kripke–Platek set theory and the variant of general set theory that Burgess (2005) calls "ST," and a demonstrable truth in Zermelo set theory and Zermelo–Fraenkel set theory, with or without the axiom of choice. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\exists x\, \forall y\, \lnot (y \in x) or in words: : There is a set such that no element is a member of it. Interpretation We can use the axiom of extensionality to show that there is only one empty set. Since it is unique we can name it. It is called the ''empty set'' (denoted by or ∅). The axiom, stated in natural language, is in essence: :''An empty set exists''. This formula is a theorem and considered true in every version of set theory. The only controversy is over how it should be justified: by making it an axiom; by deriving i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiomatic Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kenneth Kunen
Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic topology and measure theory. He also worked on non-associative algebraic systems, such as loops, and used computer software, such as the Otter theorem prover, to derive theorems in these areas. Personal life Kunen was born in New York City in 1943 and died in 2020. He lived in Madison, Wisconsin, with his wife Anne, with whom he had two sons, Isaac and Adam. Education Kunen completed his undergraduate degree at the California Institute of Technology and received his Ph.D. in 1968 from Stanford University, where he was supervised by Dana Scott. Career and research Kunen showed that if there exists a nontrivial elementary embedding ''j'' : ''L'' → ''L'' of the constructible universe, then 0# exists. He proved the consistency o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas Jech
Thomas J. Jech ( cs, Tomáš Jech, ; born January 29, 1944 in Prague) is a mathematician specializing in set theory who was at Penn State for more than 25 years. Life He was educated at Charles University (his advisor was Petr Vopěnka) and from 2000 is at thInstitute of Mathematicsof the Academy of Sciences of the Czech Republic. Work Jech's research also includes mathematical logic, algebra, analysis, topology, and measure theory. Jech gave the first published proof of the consistency of the existence of a Suslin line. With Karel Prikry, he introduced the notion of precipitous ideal. He gave several models where the axiom of choice failed, for example one with ω1 measurable In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simila .... The concept of a Jech–Kunen tree is named after ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Halmos
Paul Richard Halmos ( hu, Halmos Pál; March 3, 1916 – October 2, 2006) was a Hungarian-born American mathematician and statistician who made fundamental advances in the areas of mathematical logic, probability theory, statistics, operator theory, ergodic theory, and functional analysis (in particular, Hilbert spaces). He was also recognized as a great mathematical expositor. He has been described as one of The Martians. Early life and education Born in Hungary into a Jewish family, Halmos arrived in the U.S. at 13 years of age. He obtained his B.A. from the University of Illinois, majoring in mathematics, but fulfilling the requirements for both a math and philosophy degree. He took only three years to obtain the degree, and was only 19 when he graduated. He then began a Ph.D. in philosophy, still at the Champaign–Urbana campus; but, after failing his masters' oral exams, he shifted to mathematics, graduating in 1938. Joseph L. Doob supervised his dissertation, titled ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Schema Of Replacement
In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF. The axiom schema is motivated by the idea that whether a class is a set depends only on the cardinality of the class, not on the rank of its elements. Thus, if one class is "small enough" to be a set, and there is a surjection from that class to a second class, the axiom states that the second class is also a set. However, because ZFC only speaks of sets, not proper classes, the schema is stated only for definable surjections, which are identified with their defining formulas. Statement Suppose P is a definable binary relation (which may be a proper class) such that for every set x there is a unique set y such that P(x,y) holds. There is a corresponding definable function F_P, where F_P(x)=y if and only if P(x,y). Consid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logical System
A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined system of abstract thought. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Background Each formal system is described by primitive symbols (which collectively form an alphabet) to finitely construct a formal language from a set of axioms through inferential rules of formation. The system thus consists of valid formulas built up through finite combinations of the primitive symbols—combinations that are formed fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Schema Of Separation
In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation, subset axiom scheme or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Some mathematicians call it the axiom schema of comprehension, although others use that term for ''unrestricted'' comprehension, discussed below. Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory. Statement One instance of the schema is included for each formula φ in the language of set theory with free variables among ''x'', ''w''1, ..., ''w''''n'', ''A''. So ''B'' does not occur free in φ. In the formal language of set theory, the axiom schema is: :\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall x \, ( x \in B \Leftrightarrow x \in A \land \varphi(x, w_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Infinity
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.Zermelo: ''Untersuchungen über die Grundlagen der Mengenlehre'', 1907, in: Mathematische Annalen 65 (1908), 261-281; Axiom des Unendlichen p. 266f. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\exists \mathbf \, ( \empty \in \mathbf \, \land \, \forall x \in \mathbf \, ( \, ( x \cup \ ) \in \mathbf ) ) . In words, there is a set I (the set which is postulated to be infinite), such that the empty set is in I, and such that whenever any ''x'' is a member of I, the set formed by taking the union of ''x'' with its singleton is also a member of I. Such a set is sometimes called an inductive set. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Extensionality
In axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of extensionality, or axiom of extension, is one of the axioms of Zermelo–Fraenkel set theory. It says that sets having the same elements are the same set. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\forall A \, \forall B \, ( \forall X \, (X \in A \iff X \in B) \implies A = B) or in words: :Given any Set (mathematics), set ''A'' and any set ''B'', if for every set ''X'', ''X'' is a member of ''A'' if and only if ''X'' is a member of ''B'', then ''A'' is equal (math), equal to ''B''. :(It is not really essential that ''X'' here be a ''set'' — but in ZF, everything is. See #In set theory with ur-elements, Ur-elements below for when this is violated.) The converse, \forall A \, \forall B \, (A = B \implies \forall X \, (X \in A \iff X \in B) ), of this axiom follows from the substitution property of equality (ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The term has subtle differences in definition when used in the context of different fields of study. As defined in classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. As used in modern logic, an axiom is a premise or starting point for reasoning. As used in mathematics, the term ''axiom'' is used in two related but distinguishable senses: "logical axioms" and "non-logical axioms". Logical axioms are usually statements that are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms (e.g., ) are actua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]