Apochromat
   HOME
*



picture info

Apochromat
An apochromat, or apochromatic lens (apo), is a photographic or other lens that has better correction of chromatic and spherical aberration than the much more common achromat lenses. Explanation Chromatic aberration is the phenomenon of different colors focusing at different distances from a lens. In photography, chromatic aberration produces soft overall images, and color fringing at high-contrast edges, like an edge between black and white. Astronomers face similar problems, particularly with telescopes that use lenses rather than mirrors. ''Achromatic'' lenses are corrected to bring ''two'' wavelengths into focus in the same plane – typically red (~0.590  µm) and blue (~0.495  µm). ''Apo''chromatic lenses are designed to bring ''three'' colors into focus in the same plane – typically red (~0.620  µm), green (~0.530  µm), and blue (~0.465  µm). The residual color error (secondary spectrum) can be up to an order of magnitude less than for an achro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Apochromat
An apochromat, or apochromatic lens (apo), is a photographic or other lens that has better correction of chromatic and spherical aberration than the much more common achromat lenses. Explanation Chromatic aberration is the phenomenon of different colors focusing at different distances from a lens. In photography, chromatic aberration produces soft overall images, and color fringing at high-contrast edges, like an edge between black and white. Astronomers face similar problems, particularly with telescopes that use lenses rather than mirrors. ''Achromatic'' lenses are corrected to bring ''two'' wavelengths into focus in the same plane – typically red (~0.590  µm) and blue (~0.495  µm). ''Apo''chromatic lenses are designed to bring ''three'' colors into focus in the same plane – typically red (~0.620  µm), green (~0.530  µm), and blue (~0.465  µm). The residual color error (secondary spectrum) can be up to an order of magnitude less than for an achro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apochromatic Focal Curve
An apochromat, or apochromatic lens (apo), is a photographic or other lens that has better correction of chromatic and spherical aberration than the much more common achromat lenses. Explanation Chromatic aberration is the phenomenon of different colors focusing at different distances from a lens. In photography, chromatic aberration produces soft overall images, and color fringing at high-contrast edges, like an edge between black and white. Astronomers face similar problems, particularly with telescopes that use lenses rather than mirrors. ''Achromatic'' lenses are corrected to bring ''two'' wavelengths into focus in the same plane – typically red (~0.590  µm) and blue (~0.495  µm). ''Apo''chromatic lenses are designed to bring ''three'' colors into focus in the same plane – typically red (~0.620  µm), green (~0.530  µm), and blue (~0.465  µm). The residual color error (secondary spectrum) can be up to an order of magnitude less than for an achro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Telescope Types
The following are lists of devices categorized as types of telescopes or devices associated with telescopes. They are broken into major classifications with many variations due to professional, amateur, and commercial sub-types. Telescopes can be classified by optical design or mechanical design/construction. Telescopes can also be classified by where they are placed, such as space telescopes. One major determining factor is type of light, or particle being observed including devices referred to as "telescopes" that do not form an image or use optics. Some telescopes are classified by the task they perform; for example Solar telescopes are all designs that look at the Sun, Dobsonian telescopes are designed to be low cost and portable, Aerial telescopes overcame the optical shortcomings of 17th-century objective lenses, etc. List of optical telescope types Optical telescopes can be classified by three primary optical designs (refractor, reflector, or catadioptric), by sub-designs o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lens (optics)
A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), usually arranged along a common axis. Lenses are made from materials such as glass or plastic, and are ground and polished or molded to a desired shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called lenses, such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses. Lenses are used in various imaging devices like telescopes, binoculars and cameras. They are also used as visual aids in glasses to correct defects of vision such as myopia and hypermetropia. History The word ''lens'' comes from '' lēns'', the Latin name of the lentil (a seed of a lentil plant), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superachromat
The superachromat or superachromatic lens was first conceived and developed by Maximilian Herzberger as the ultimate well-corrected lens. The color shift curve of a superachromat is a quartic, meaning that in theory four separate colors can be brought to focus in the same plane, while simultaneously correcting spherical aberration and field aberrations. This near-perfect correction of chromatic aberration is highly beneficial in film and digital multi-spectral photography, as a superachromat can focus near-infrared energy in the 0.7 to 1.0 micrometer wavelength band in the same focal plane as visible light, eliminating the need for refocusing. Unfortunately, due to the limited selection of optical glasses and partial dispersion properties, superachromats must be manufactured with costly fluorite glasses and to very tight tolerances. {{clear, left See also *Photographic lens *Achromat *Apochromat An apochromat, or apochromatic lens (apo), is a photographic or other lens that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photographic Lens
A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically. There is no major difference in principle between a lens used for a still camera, a video camera, a telescope, a microscope, or other apparatus, but the details of design and construction are different. A lens might be permanently fixed to a camera, or it might be interchangeable with lenses of different focal lengths, apertures, and other properties. While in principle a simple convex lens will suffice, in practice a compound lens made up of a number of optical lens elements is required to correct (as much as possible) the many optical aberrations that arise. Some aberrations will be present in any lens system. It is the job of the lens designer to balance these and produce a desi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

F-number
In optics, the f-number of an optical system such as a camera lens is the ratio of the system's focal length to the diameter of the entrance pupil ("clear aperture").Smith, Warren ''Modern Optical Engineering'', 4th Ed., 2007 McGraw-Hill Professional, p. 183. It is also known as the focal ratio, f-ratio, or f-stop, and is very important in photography. It is a dimensionless number that is a quantitative measure of lens speed; increasing the f-number is referred to as ''stopping down''. The f-number is commonly indicated using a lower-case hooked f with the format ''N'', where ''N'' is the f-number. The f-number is the reciprocal of the relative aperture (the aperture diameter divided by focal length). Notation The f-number is given by: N = \frac \ where f is the focal length, and D is the diameter of the entrance pupil (''effective aperture''). It is customary to write f-numbers preceded by "", which forms a mathematical expression of the entrance pupil diameter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluorite Lens
Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon. The Mohs scale of mineral hardness, based on scratch hardness comparison, defines value 4 as fluorite. Pure fluorite is colourless and transparent, both in visible and ultraviolet light, but impurities usually make it a colorful mineral and the stone has ornamental and lapidary uses. Industrially, fluorite is used as a flux for smelting, and in the production of certain glasses and enamels. The purest grades of fluorite are a source of fluoride for hydrofluoric acid manufacture, which is the intermediate source of most fluorine-containing fine chemicals. Optically clear transparent fluorite lenses have low dispersion, so lenses made from it exhibit less chromatic aberration, making them valuable in microscopes and telescopes. Fluorite optics are also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zoom Lens
A zoom lens is a mechanical assembly of lens elements for which the focal length (and thus angle of view) can be varied, as opposed to a fixed-focal-length (FFL) lens (see prime lens). A true zoom lens, also called a parfocal lens, is one that maintains focus when its focal length changes. Most consumer zoom lenses do not maintain perfect focus, but are still parfocal designs. Most camera phones that are advertised as having optical zoom actually use a few cameras of different but fixed focal length, combined with digital zoom to make a hybrid system. The convenience of variable focal length comes at the cost of complexity – and some compromises on image quality, weight, dimensions, aperture, autofocus performance, and cost. For example, all zoom lenses suffer from at least slight, if not considerable, loss of image resolution at their maximum aperture, especially at the extremes of their focal length range. This effect is evident in the corners of the image, when displa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Lens
In film and photography, a prime lens is a fixed focal length photographic lens (as opposed to a zoom lens), typically with a maximum aperture from f2.8 to f1.2. The term can also mean the primary lens in a combination lens system. Confusion between these two meanings can occur without clarifying context. Alternate terms, such as ''primary focal length'', ''fixed focal length'', or ''FFL'' are sometimes used to avoid ambiguity. As alternative to zoom lens The term ''prime'' has come to mean the opposite of ''zoom''—a fixed-focal-length, or unifocal lens. While a prime lens of a given focal length is less versatile than a zoom lens, it is often of superior optical quality, wider maximum aperture, lighter weight, and smaller size. These advantages stem from having fewer moving parts, optical elements optimized for one particular focal length, and a less complicated lens formula that creates fewer optical aberration issues. Larger maximum aperture (smaller f-number) facilitate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Index Of Refraction
In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or refracted, when entering a material. This is described by Snell's law of refraction, , where ''θ''1 and ''θ''2 are the angle of incidence and angle of refraction, respectively, of a ray crossing the interface between two media with refractive indices ''n''1 and ''n''2. The refractive indices also determine the amount of light that is reflected when reaching the interface, as well as the critical angle for total internal reflection, their intensity ( Fresnel's equations) and Brewster's angle. The refractive index can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is , and similarly the wavelength in that medium is , where ''λ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flint Glass
Flint glass is optical glass that has relatively high refractive index and low Abbe number (high Dispersion (optics), dispersion). Flint glasses are arbitrarily defined as having an Abbe number of 50 to 55 or less. The currently known flint glasses have refractive indices ranging between 1.45 and 2.00. A Lens (optics)#Types of simple lenses, concave lens of flint glass is commonly combined with a Lens (optics)#Types of simple lenses, convex lens of Crown glass (optics), crown glass to produce an achromatic doublet lens because of their compensating optical properties, which reduces chromatic aberration (colour defects). With respect to glass, the term ''flint'' derives from the flint nodules found in the chalk deposits of southeast England that were used as a source of high purity silica by George Ravenscroft, c. 1662, to produce a potash lead glass that was the precursor to English lead crystal. Traditionally, flint glasses were lead glasses containing around 4–60% lead(II) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]