Admissible Heuristic
   HOME
*





Admissible Heuristic
In computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path. It is related to the concept of consistent heuristics. While all consistent heuristics are admissible, not all admissible heuristics are consistent. Search algorithms An admissible heuristic is used to estimate the cost of reaching the goal state in an informed search algorithm. In order for a heuristic to be admissible to the search problem, the estimated cost must always be lower than or equal to the actual cost of reaching the goal state. The search algorithm uses the admissible heuristic to find an estimated optimal path to the goal state from the current node. For example, in A* search the evaluation function (where n is the current node) is: f(n) = g(n) + h(n) where :f(n) = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fifteen Puzzle
The 15 puzzle (also called Gem Puzzle, Boss Puzzle, Game of Fifteen, Mystic Square and many others) is a sliding puzzle having 15 square tiles numbered 1–15 in a frame that is 4 tiles high and 4 tiles wide, leaving one unoccupied tile position. Tiles in the same row or column of the open position can be moved by sliding them horizontally or vertically, respectively. The goal of the puzzle is to place the tiles in numerical order. Named for the number of tiles in the frame, the 15 puzzle may also be called a 16 puzzle, alluding to its total tile capacity. Similar names are used for different sized variants of the 15 puzzle, such as the 8 puzzle that has 8 tiles in a 3×3 frame. The ''n'' puzzle is a classical problem for modelling algorithms involving heuristics. Commonly used heuristics for this problem include counting the number of misplaced tiles and finding the sum of the taxicab distances between each block and its position in the goal configuration. Note that both are '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Search Algorithm
In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the search space of a problem domain, with either discrete or continuous values. algorithms are Although search engines use search algorithms, they belong to the study of information retrieval, not algorithmics. The appropriate search algorithm often depends on the data structure being searched, and may also include prior knowledge about the data. Search algorithms can be made faster or more efficient by specially constructed database structures, such as search trees, hash maps, and database indexes. Search algorithms can be classified based on their mechanism of searching into three types of algorithms: linear, binary, and hashing. Linear search algorithms check every record for the one associated with a target key in a linear fashion. Binary, or half-interval, searches repeatedly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heuristic Function
In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover") is a technique designed for solving a problem more quickly when classic methods are too slow for finding an approximate solution, or when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut. A heuristic function, also simply called a heuristic, is a function that ranks alternatives in search algorithms at each branching step based on available information to decide which branch to follow. For example, it may approximate the exact solution. Definition and motivation The objective of a heuristic is to produce a solution in a reasonable time frame that is good enough for solving the problem at hand. This solution may not be the best of all the solutions to this problem, or it may simply approximate the exact solution. But it is still valuable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Consistent Heuristic
In the study of path-finding problems in artificial intelligence, a heuristic function is said to be consistent, or monotone, if its estimate is always less than or equal to the estimated distance from any neighbouring vertex to the goal, plus the cost of reaching that neighbour. Formally, for every node ''N'' and each successor ''P'' of ''N'', the estimated cost of reaching the goal from ''N'' is no greater than the step cost of getting to ''P'' plus the estimated cost of reaching the goal from ''P''. That is: :h(N) \leq c(N,P) + h(P) and : h(G) = 0.\, where :* ''h'' is the consistent heuristic function :* ''N'' is any node in the graph :* ''P'' is any descendant of ''N'' :* ''G'' is any goal node :* c(N,P) is the cost of reaching node P from N Informally, every node ''i'' will give an estimate that, accounting for the cost to reach the next node, is always lesser than the estimate at node ''i+1''. A consistent heuristic is also admissible, i.e. it never overestimates the cost ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof By Contradiction
In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known as indirect proof, proof by assuming the opposite, and ''reductio ad impossibile''. It is an example of the weaker logical refutation ''reductio ad absurdum''. A mathematical proof employing proof by contradiction usually proceeds as follows: #The proposition to be proved is ''P''. #We assume ''P'' to be false, i.e., we assume ''¬P''. #It is then shown that ''¬P'' implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, ''Q'' and ''¬Q'', and appealing to the Law of noncontradiction. #Since assuming ''P'' to be false leads to a contradiction, it is concluded that ''P'' is in fact true. An important special case is the existence proof by contradiction: in order to demonstrate the existence of an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

A* Search Algorithm
A* (pronounced "A-star") is a graph traversal and path search algorithm, which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. One major practical drawback is its O(b^d) space complexity, as it stores all generated nodes in memory. Thus, in practical travel-routing systems, it is generally outperformed by algorithms which can pre-process the graph to attain better performance, as well as memory-bounded approaches; however, A* is still the best solution in many cases. Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute (now SRI International) first published the algorithm in 1968. It can be seen as an extension of Dijkstra's algorithm. A* achieves better performance by using heuristics to guide its search. Compared to Dijkstra's algorithm, the A* algorithm only finds the shortest path from a specified source to a specified goal, and not the shortest-path tree from a specified source to all possi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manhattan Distance
A taxicab geometry or a Manhattan geometry is a geometry whose usual distance function or Metric (mathematics), metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences of their Cartesian coordinates. The taxicab metric is also known as rectilinear distance, ''L''1 distance, ''L''1 distance or \ell_1 norm (see Lp space, ''Lp'' space), Snake (video game), snake distance, city block distance, Manhattan distance or Manhattan length. The latter names refer to the rectilinear street layout on the island of Manhattan, where the shortest path a taxi travels between two points is the sum of the absolute values of distances that it travels on avenues and on streets. The geometry has been used in regression analysis since the 18th century, and is often referred to as Lasso (statistics), LASSO. The geometric interpretation dates to non-Euclidean geometry of the 19th century and is due to Hermann Minkowski. In \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamming Distance
In information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of ''substitutions'' required to change one string into the other, or the minimum number of ''errors'' that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming. A major application is in coding theory, more specifically to block codes, in which the equal-length strings are vectors over a finite field. Definition The Hamming distance between two equal-length strings of symbols is the number of positions at which the corresponding symbols are different. Examples The symbols may be letters, bits, or decimal digits, among other possibilities. For example, the Hamming distance between: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inductive Transfer
Transfer learning (TL) is a research problem in machine learning (ML) that focuses on storing knowledge gained while solving one problem and applying it to a different but related problem. For example, knowledge gained while learning to recognize cars could apply when trying to recognize trucks. This area of research bears some relation to the long history of psychological literature on transfer of learning, although practical ties between the two fields are limited. From the practical standpoint, reusing or transferring information from previously learned tasks for the learning of new tasks has the potential to significantly improve the sample efficiency of a reinforcement learning agent. History In 1976, Stevo Bozinovski and Ante Fulgosi published a paper explicitly addressing transfer learning in neural networks training. The paper gives a mathematical and geometrical model of transfer learning. In 1981, a report was given on the application of transfer learning in training ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Relaxation (approximation)
In mathematical optimization and related fields, relaxation is a modeling strategy. A relaxation is an approximation of a difficult problem by a nearby problem that is easier to solve. A solution of the relaxed problem provides information about the original problem. For example, a linear programming relaxation of an integer programming problem removes the integrality constraint and so allows non-integer rational solutions. A Lagrangian relaxation of a complicated problem in combinatorial optimization penalizes violations of some constraints, allowing an easier relaxed problem to be solved. Relaxation techniques complement or supplement branch and bound algorithms of combinatorial optimization; linear programming and Lagrangian relaxations are used to obtain bounds in branch-and-bound algorithms for integer programming. The modeling strategy of relaxation should not be confused with iterative methods of relaxation, such as successive over-relaxation (SOR); iterative methods of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]