Admissible Heuristic
   HOME





Admissible Heuristic
In computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path. In other words, it should act as a lower bound. It is related to the concept of consistent heuristics. While all consistent heuristics are admissible, not all admissible heuristics are consistent. Search algorithms An admissible heuristic is used to estimate the cost of reaching the goal state in an informed search algorithm. In order for a heuristic to be admissible to the search problem, the estimated cost must always be lower than or equal to the actual cost of reaching the goal state. The search algorithm uses the admissible heuristic to find an estimated optimal path to the goal state from the current node. For example, in A* search the evaluation function (where n is the cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fifteen Puzzle
The 15 puzzle (also called Gem Puzzle, Boss Puzzle, Game of Fifteen, Mystic Square and more) is a sliding puzzle. It has 15 square tiles numbered 1 to 15 in a frame that is 4 tile positions high and 4 tile positions wide, with one unoccupied position. Tiles in the same row or column of the open position can be moved by sliding them horizontally or vertically, respectively. The goal of the puzzle is to place the tiles in numerical order (from left to right, top to bottom). Named after the number of tiles in the frame, the 15 puzzle may also be called a ''"16 puzzle"'', alluding to its total tile capacity. Similar names are used for different sized variants of the 15 puzzle, such as the 8 puzzle, which has 8 tiles in a 3×3 frame. The ''n'' puzzle is a classical problem for Modeling language, modeling algorithms involving heuristic (computer science), heuristics. Commonly used heuristics for this problem include counting the number of misplaced tiles and finding the sum of the tax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Search Algorithm
In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the Feasible region, search space of a problem domain, with Continuous or discrete variable, either discrete or continuous values. Although Search engine (computing), search engines use search algorithms, they belong to the study of information retrieval, not algorithmics. The appropriate search algorithm to use often depends on the data structure being searched, and may also include prior knowledge about the data. Search algorithms can be made faster or more efficient by specially constructed database structures, such as search trees, hash maps, and database indexes. Search algorithms can be classified based on their mechanism of searching into three types of algorithms: linear, binary, and hashing. Linear search algorithms check every record for the one associated with a target key i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heuristic Function
A heuristic or heuristic technique (''problem solving'', '' mental shortcut'', ''rule of thumb'') is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless "good enough" as an approximation or attribute substitution. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision. Context Gigerenzer & Gaissmaier (2011) state that sub-sets of ''strategy'' include heuristics, regression analysis, and Bayesian inference. Heuristics are strategies based on rules to generate optimal decisions, like the anchoring effect and utility maximization problem. These strategies depend on using readily accessible, though loosely applicable, information to control problem solving in human beings, machines and abstract ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Consistent Heuristic
In the study of path-finding problems in artificial intelligence, a heuristic function is said to be consistent, or monotone, if its estimate is always less than or equal to the estimated distance from any neighbouring vertex to the goal, plus the cost of reaching that neighbour. Formally, for every node ''N'' and each successor ''P'' of ''N'', the estimated cost of reaching the goal from ''N'' is no greater than the step cost of getting to ''P'' plus the estimated cost of reaching the goal from ''P''. That is: :h(N) \leq c(N,P) + h(P) and : h(G) = 0.\, where :* ''h'' is the consistent heuristic function :* ''N'' is any node in the graph :* ''P'' is any descendant of ''N'' :* ''G'' is any goal node :* c(N,P) is the cost of reaching node P from N Informally, every node ''i'' will give an estimate that, accounting for the cost to reach the next node, is always lesser than or equal to the estimate at node ''i+1''. A consistent heuristic is also admissible, i.e. it never overestimat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof By Contradiction
In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved. In this general sense, proof by contradiction is also known as indirect proof, proof by assuming the opposite, and ''reductio ad impossibile''. A mathematical proof employing proof by contradiction usually proceeds as follows: #The proposition to be proved is ''P''. #We assume ''P'' to be false, i.e., we assume ''¬P''. #It is then shown that ''¬P'' implies falsehood. This is typically accomplished by deriving two mutually ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

A* Search Algorithm
A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path (with respect to the given weights) from source to goal. One major practical drawback is its O(b^d) space complexity where is the depth of the shallowest solution (the length of the shortest path from the source node to any given goal node) and is the branching factor (the maximum number of successors for any given state), as it stores all generated nodes in memory. Thus, in practical travel-routing systems, it is generally outperformed by algorithms that can pre-process the graph to attain better performance, as well as by memory-bounded approaches; however, A* is still the best solution in many cases. Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute (now SRI International) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manhattan Distance
Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two point (geometry), points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a distance function (or Metric (mathematics), metric) called the ''taxicab distance'', ''Manhattan distance'', or ''city block distance''. The name refers to the island of Manhattan, or generically any planned city with a rectangular grid of streets, in which a taxicab can only travel along grid directions. In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length. The taxicab distance is also sometimes known as ''rectilinear distance'' or distanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamming Distance
In information theory, the Hamming distance between two String (computer science), strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of ''substitutions'' required to change one string into the other, or equivalently, the minimum number of ''errors'' that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming. A major application is in coding theory, more specifically to block codes, in which the equal-length strings are Vector space, vectors over a finite field. Definition The Hamming distance between two equal-length strings of symbols is the number of positions at which the corresponding symbols are different. Examples The symbols may be letters, bits, or decimal digits, am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inductive Transfer
Transfer learning (TL) is a technique in machine learning (ML) in which knowledge learned from a task is re-used in order to boost performance on a related task. For example, for image classification, knowledge gained while learning to recognize cars could be applied when trying to recognize trucks. This topic is related to the psychological literature on transfer of learning, although practical ties between the two fields are limited. Reusing/transferring information from previously learned tasks to new tasks has the potential to significantly improve learning efficiency. Since transfer learning makes use of training with multiple objective functions it is related to cost-sensitive machine learning and multi-objective optimization. History In 1976, Bozinovski and Fulgosi published a paper addressing transfer learning in neural network training. The paper gives a mathematical and geometrical model of the topic. In 1981, a report considered the application of transfer learning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Relaxation (approximation)
In mathematical optimization and related fields, relaxation is a mathematical model, modeling strategy. A relaxation is an approximation of a difficult problem by a nearby problem that is easier to solve. A solution of the relaxed problem provides information about the original problem. For example, a linear programming relaxation of an integer programming problem removes the integrality constraint and so allows non-integer rational solutions. A Lagrangian relaxation of a complicated problem in combinatorial optimization penalizes violations of some constraints, allowing an easier relaxed problem to be solved. Relaxation techniques complement or supplement branch and bound algorithms of combinatorial optimization; linear programming and Lagrangian relaxations are used to obtain bounds in branch-and-bound algorithms for integer programming. The modeling strategy of relaxation should not be confused with iterative methods of relaxation method, relaxation, such as successive over-re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]